解答:
解:(1)∵函數(shù)
f(x)=lnx-ax+-1(a>0),
所以f′(x)=
(x>0),
令h(x)=ax
2-x+1-a(x>0)
當(dāng)a≠0時(shí),由f′(x)=0,即ax
2-x+1-a=0,解得x
1=1,x
2=
-1.
當(dāng)a=
時(shí)x
1=x
2,h(x)≥0恒成立,此時(shí)f′(x)≤0,函數(shù)f(x)單調(diào)遞減;
當(dāng)0<a<
時(shí),
-1>1>0,x∈(0,1)時(shí)h(x)>0,f′(x)<0,函數(shù)f(x)單調(diào)遞減;
x∈(1,
-1)時(shí),h(x)<0,f′(x)>0,函數(shù)f(x)單調(diào)遞增;
x∈(
-1,+∞)時(shí),h(x)>0,f′(x)<0,函數(shù)f(x)單調(diào)遞減.
當(dāng)
<a<1時(shí),0<
-1<1,x∈(0,
-1)時(shí)h(x)>0,f′(x)<0,函數(shù)f(x)單調(diào)遞減;
x∈(
-1,1)時(shí),h(x)<0,f′(x)>0,函數(shù)f(x)單調(diào)遞增;
x∈(1,+∞)時(shí),h(x)>0,f′(x)<0,函數(shù)f(x)單調(diào)遞減
綜上所述:當(dāng)0<a<
時(shí),函數(shù)f(x)在(0,1)、(
-1,+∞)單調(diào)遞減,(1,
-1)單調(diào)遞增;
當(dāng)a=
時(shí)x
1=x
2,h(x)≥0恒成立,此時(shí)f′(x)≤0,函數(shù)f(x)在(0,+∞)單調(diào)遞減;
當(dāng)
<a<1時(shí),函數(shù)f(x)在(0,
-1)單調(diào)遞減,(
-1,1)單調(diào)遞增,(1,+∞)單調(diào)遞減.
(2)當(dāng)
a=時(shí),f(x)在(0,1)上是減函數(shù),在(1,2)上是增函數(shù),
所以對(duì)任意x
1∈(0,2),有f(x
1)≥f(1)=-
,
又已知存在x
2∈[1,2],使f(x
1)≥g(x
2),
所以-
≥g(x
2),x
2∈[1,2],(※)
又g(x)=(x-b)
2+4-b
2,x∈[1,2]
當(dāng)b<1時(shí),g(x)
min=g(1)=5-2b>0與(※)矛盾;
當(dāng)b∈[1,2]時(shí),g(x)
min=g(b)=4-b
2≥0也與(※)矛盾;
當(dāng)b>2時(shí),g(x)
min=g(2)=8-4b≤-
,所以b≥
.
綜上,實(shí)數(shù)b的取值范圍是[
,+∞).