(本小題滿分14分) 已知數(shù)列
的前n項和S
n=9-6n.
(1)求數(shù)列
的通項公式.
(2)設(shè)
,求數(shù)列
的前n項和.
解:(1)
時,
∴
………理1分,文2分
時,
∴
………理3分,文5分
∴通項公式
………理5分,文7分
(2)當
時,
∴
………理6分,文9分
時,
∴
………理7分,文11分
∴
………理9分,文14分
(3)∵
,………理10分
兩邊同時乘以2
n,得
即
∴數(shù)列{
+4}是以6為首項,4為公比的等比數(shù)列,
+4 = 6×4
n-1,∴
(n≥2) ………理13分
又C
1="1, " 滿足上式
∴通項公式
………理14分
法二:(迭代法)
=
= …… =
=
又C
1="1, " 滿足上式
∴通項公式
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知等比數(shù)列
中,
,
(1)
為數(shù)列
前
項的和,證明:
(2)設(shè)
,求數(shù)列
的通項公式;
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
本題滿分12分)
已知數(shù)列
滿足
,它的前
項和為
,且
.
①求通項
,
②若
,求數(shù)列
的前
項和的最小值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分13分)數(shù)列
上,
(1)求數(shù)列
的通項公式; (2)若
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)
觀察下列三角形數(shù)表
1 -----------第一行
2 2 -----------第二行
3 4 3 -----------第三行
4 7 7 4 -----------第四行
5 11 14 11 5
… … … …
… … … … …
假設(shè)第
行的第二個數(shù)為
,
(Ⅰ)依次寫出第六行的所有
個數(shù)字;
(Ⅱ)歸納出
的關(guān)系式并求出
的通項公式;
(Ⅲ)設(shè)
求證:
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知數(shù)列
的前
項和
,則數(shù)列
的通項公式
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
( 12分)已知正項數(shù)列
的前n項和滿足
(1)求數(shù)列
的通項公式;
(2)設(shè)
是數(shù)列
的前n項的和,求證:
查看答案和解析>>