已知函數(shù)f(x)=x3+ax2+bx+c在x=-
23
和x=1時都取得極值.
(1)求a,b的值;
(2)求f(x)在[-1,2]上的最大值和最小值(用含c的代數(shù)式表示);
(3)若對x∈[-1,2],不等式f(x)<c2恒成立,求c的取值范圍.
分析:(1)利用導(dǎo)數(shù)與極值之間的關(guān)系建立方程求解.(2)利用導(dǎo)數(shù)通過表格求函數(shù)的最大值和最小值.(3)不等式恒成立,實(shí)質(zhì)是求f(x)在[-1,2]的最大值.
解答:解:(1)f′(x)=3x2+2ax+b      …1
因?yàn)楹瘮?shù)f(x)在x=-
2
3
和x=1取到極值,即f′(-
2
3
)=0,f′(1)=0.
所以,f′(-
2
3
)=
12
9
-
4
3
a+b=0
,f′(1)=3+2a+b=0
解得 a=-
1
2
,b=-2        …3

(2)由(1)可得f(x)=x3-
1
2
x2-2x+c
x -1 (-1,-
2
3
-
2
3
(-
2
3
,1)
1 (1,2) 2
f'(x) + 0 - 0 +
f(x)
1
2
+c
遞增 +c 遞減 -
3
2
+c
遞增 2+c
所以,在[-1,2]上  fmin(x)=f(1)=-
3
2
+c,fmax(x)=f(2)=2+c…7
(3)要使f(x)<c2在x∈[-1,2]恒成立,只需fmax(x)<c2,即2+c<c2
解得 c<-1或c>2     …10
點(diǎn)評:本題的考點(diǎn)是函數(shù)的極值與導(dǎo)數(shù)的關(guān)系,以及利用導(dǎo)數(shù)求函數(shù)的最大值和最小值問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案