已知函數(shù)f(x)=x+
1
x

(1)判斷函數(shù)f(x)的奇偶性.
(2)判斷f(x)在區(qū)間(0,1)上的單調(diào)性,并用定義證明.
(3)當(dāng)x∈(-∞,0)時,寫出函數(shù)f(x)=x+
1
x
的單調(diào)區(qū)間(不必證明).
分析:(1)求函數(shù)的定義域,利用函數(shù)奇偶性的定義判斷.(2)利用函數(shù)的單調(diào)性或?qū)?shù)證明.(3)利用函數(shù)的單調(diào)性確定函數(shù)的單調(diào)區(qū)間.
解答:解:(1)函數(shù)f(x)的定義域?yàn)閧x|x≠0},關(guān)于原點(diǎn)對稱,
所以f(-x)=-x-
1
x
=-(x+
1
x
)=-f(x)
,所以函數(shù)f(x)是奇函數(shù).
(2)任設(shè)0<x1<x2<1,
f(x1)-f(x2)=x1+
1
x1
-(x2+
1
x2
)=x1-x2+(
1
x1
-
1
x2
)
=(x1-x2)
x1x2-1
x1x2

因?yàn)?<x1<x2<1,0<x1x2<1,
所以f(x1)-f(x2)>0,即f(x1)>f(x2),
所以函數(shù)在(0,1)上為減函數(shù).
(3)由(1)(2)知,f(x)在(-1,0)上是減函數(shù),在(-∞,1)上是增函數(shù).
點(diǎn)評:本題主要考查函數(shù)奇偶性的應(yīng)用,以及利用定義法證明函數(shù)的單調(diào)性以及判斷函數(shù)的單調(diào)區(qū)間.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案