設(shè)函數(shù)。

(1)若時(shí),函數(shù)取得極值,求函數(shù)的圖像在處的切線方程;

(2)若函數(shù)在區(qū)間內(nèi)不單調(diào),求實(shí)數(shù)的取值范圍。

解:①  由

   當(dāng)時(shí),  即切點(diǎn)

∴切線方程為

②f(x)在區(qū)間(,1)內(nèi)不單調(diào),即f’(x)=0在(,1)有解

∴ 3x2+2ax+1=0   2ax=-3x2-1由x∈(,1)   ∴

令h(x)    ∴

知h(x)在單調(diào)遞減,在單調(diào)遞增

∴h(1)<h(x)≤

  即

而當(dāng)時(shí),

∴舍去   綜上

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分13分) 設(shè)函數(shù)

(1)若時(shí)函數(shù)有三個(gè)互不相同的零點(diǎn),求的取值范圍;

(2)若函數(shù)內(nèi)沒有極值點(diǎn),求的取值范圍;

(3)若對任意的,不等式上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)

(1)若時(shí)函數(shù)有三個(gè)互不相同的零點(diǎn),求的取值范圍;

(2)若函數(shù)內(nèi)沒有極值點(diǎn),求的取值范圍;

(3)若對任意的,不等式上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江西省高三第二次聯(lián)考數(shù)學(xué)文卷 題型:解答題

設(shè)函數(shù)

(1)若時(shí),函數(shù)取得極值,求函數(shù)的圖像在處的切線方程;

(2)若函數(shù)在區(qū)間內(nèi)不單調(diào),求實(shí)數(shù)的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)數(shù)學(xué)公式
(1)若數(shù)學(xué)公式時(shí),直線l與函數(shù)f(x)和函數(shù)g(x)的圖象相切于同一點(diǎn),求切線l的方程;
(2)若f(x)在[2,4]內(nèi)為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.
說明:請考生在第22、23、24三題中任選一題作答,如果多做,則按所做第一題記分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山西省太原市高三調(diào)研數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

設(shè)函數(shù)
(1)若時(shí),直線l與函數(shù)f(x)和函數(shù)g(x)的圖象相切于同一點(diǎn),求切線l的方程;
(2)若f(x)在[2,4]內(nèi)為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.
說明:請考生在第22、23、24三題中任選一題作答,如果多做,則按所做第一題記分.

查看答案和解析>>

同步練習(xí)冊答案