已知正方體ABCD-A1B1C1D1中,求
(1)AA1與C1D1所成的角;
(2)A1B與B1D1所成的角;
(3)BD與A1C1所成的角;
(4)AC1與BB1所成的角的正切值.
考點:異面直線及其所成的角
專題:計算題,空間角
分析:作出圖形,依據(jù)圖形依次求出四個角即可
解答: 解:如圖
(1)由于AA1垂直于C1D1所在的面,故AA1與C1D1所成的角為
π
2

(2)由于B1D1∥BD,連接A1D,則可得三角形A1BD等邊三角形,故直線A1B與BD所成的角為
π
3
,即異面直線A1B與B1D1所成的角為
π
3

(3)由于兩異面直線BD與A1C1互相垂直,故BD與A1C1所成的角為
π
2
;
(4)連接AC,由于BB1∥CC1,故∠AC1C的大小即的大小AC1與BB1所成的角的大小,由圖知,tan∠AC1C=
2
,所以AC1與BB1所成的角的正切值為
2
點評:本題考查異面直線所成的角的求法,根據(jù)定義將求異面直線所成角轉(zhuǎn)化為平面角是解答的關(guān)鍵,
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

以正四棱臺(底面為正方形,各個側(cè)面均為全等的等腰梯形)為模型,驗證棱臺的平行于底面的截面的性質(zhì):設(shè)棱臺上底面面積為S1,下底面面積為S2,平行于底面的截面將棱臺的高分成上、下比為m:n的兩段,則截面面積S滿足下列關(guān)系:
S
=
m
S2
+n
S1
m+n
,當(dāng)m=n時,則
S
=
S1+
S2
2
(中截面面積公式).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在平面直角坐標(biāo)系中,有三點A(1,0)、B(-1,2)、C(-2,2),請用有向線段表示A到B,B到C,C到A的位移.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一雙曲線焦點的坐標(biāo),離心率分別為(±5,0)、
3
2
,則它的共軛雙曲線的焦點坐標(biāo)、離心率分別分別是( 。
A、(0,±5),
3
5
B、(0,±5),
3
2
C、(0,±
5
),
3
2
D、(0,±
5
),
3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知O為原點,橢圓
x2
25
+
y2
9
=1上一點P到左焦點F1的距離為4,M是PF1的中點.則|OM|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知動圓M經(jīng)過點A(-2,0),且與圓C:(x-2)2+y2=20內(nèi)切.
(Ⅰ)求動圓圓心M的軌跡E的方程;
(Ⅱ)求軌跡E上任意一點M(x,y)到定點B(-1,0)的距離d的最小值,并求d取得最小值時的點M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的立體圖如圖所示,該幾何體的三視圖不可能是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明:1325>25。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線x+y=
3
a與圓x2+y2=a2+(a-1)2相交于A、B兩點,點O是坐標(biāo)原點,若△AOB是正三角形,則實數(shù)a=
 

查看答案和解析>>

同步練習(xí)冊答案