當(dāng)不等式組所表示的平面區(qū)域的面積最小時(shí),實(shí)數(shù)k的值為(  )

A.-  B.-  C.-1  D.-2

 

【答案】

D

【解析】由于不等式組所表示的平面區(qū)域由三條直線圍成,其中直線kx-y+2-k=0(k<0)即y-2=k(x-1)(k<0)經(jīng)過定點(diǎn)(1,2),

因此問題轉(zhuǎn)化為求經(jīng)過定點(diǎn)(1,2)的直線與兩坐標(biāo)軸在第一象限內(nèi)所圍成的三角形的面積的最小值.

如圖所示,設(shè)所圍成的區(qū)域的面積為S,則S=•|OA|•|OB|=•|2-k|•|1-|.因?yàn)閗<0,所以-k>0,當(dāng)S取得最小值4時(shí),-k=-,解得k=-2. 選D

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年山東省臨沂市高三上學(xué)期期中考試文科數(shù)學(xué)卷 題型:選擇題

設(shè)不等式組所表示的平面區(qū)域是,平面區(qū)

關(guān)于原點(diǎn)對(duì)稱,對(duì)于中的任意點(diǎn)A與中的任意點(diǎn)B,|AB|的最小值等于

(A)          (B)2         (C)        (D)3

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年山東省臨沂市高三上學(xué)期期中考試文科數(shù)學(xué)卷 題型:選擇題

設(shè)不等式組所表示的平面區(qū)域是,平面區(qū)

關(guān)于原點(diǎn)對(duì)稱,對(duì)于中的任意點(diǎn)A與中的任意點(diǎn)B,|AB|的最小值等于

(A)          (B)2         (C)        (D)3

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

當(dāng)不等式組數(shù)學(xué)公式所表示的平面區(qū)域的面積最小時(shí),實(shí)數(shù)k的值為


  1. A.
    -數(shù)學(xué)公式
  2. B.
    -數(shù)學(xué)公式
  3. C.
    -1
  4. D.
    -2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高考數(shù)學(xué)總復(fù)習(xí)備考綜合模擬試卷(1)(解析版) 題型:選擇題

當(dāng)不等式組所表示的平面區(qū)域的面積最小時(shí),實(shí)數(shù)k的值為( )
A.-
B.-
C.-1
D.-2

查看答案和解析>>

同步練習(xí)冊(cè)答案