8.函數(shù)y=$\frac{{{x^2}ln|x|}}{|x|}$的圖象大致是( 。
A.B.C.D.

分析 根據(jù)掌握函數(shù)的奇偶性和函數(shù)的單調(diào)性即可判斷.

解答 解:當(dāng)x>0時(shí),y=xlnx,y′=1+lnx,
即0<x<$\frac{1}{e}$時(shí),函數(shù)y單調(diào)遞減,當(dāng)x>$\frac{1}{e}$,函數(shù)y單調(diào)遞增,
因?yàn)楹瘮?shù)y為偶函數(shù),
故選:D

點(diǎn)評(píng) 本題考查了函數(shù)圖象的識(shí)別,關(guān)鍵是掌握函數(shù)的奇偶性和函數(shù)的單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.長(zhǎng)方體ABCD-A1B1C1D1的各個(gè)頂點(diǎn)都在體積為$\frac{32π}{3}$的球O 的球面上,其中AA1=2,則四棱錐O-ABCD 的體積的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.?dāng)?shù)列{an}的通項(xiàng)an=n2(sin2$\frac{nπ}{3}$-cos2$\frac{nπ}{3}$),其前n項(xiàng)和為Sn,則S30=-470.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知圓C:(x-a)2+(y-a)2=1(a>0)與直線y=2x相交于P、Q兩點(diǎn),則當(dāng)△CPQ的面積為$\frac{1}{2}$時(shí),實(shí)數(shù)a的值為( 。
A.$\frac{{\sqrt{5}}}{2}$B.$\frac{{\sqrt{10}}}{2}$C.$\frac{{\sqrt{5}}}{4}$D.$\frac{{\sqrt{10}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB=AA1=2,AC=$\sqrt{5}$,BC=3,M,N分別為B1C1、AA1的中點(diǎn).
(1)求證:平面ABC1⊥平面AA1C1C;
(2)求證:MN∥平面ABC1,并求M到平面ABC1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)橢圓E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)過(guò)A(0,-1),焦點(diǎn)為F1,F(xiàn)2,橢圓E上滿足MF1⊥MF2的點(diǎn)M有且僅有兩個(gè).
(1)求橢圓E的方程及離心率e;
(2)經(jīng)過(guò)點(diǎn)(1,1),且斜率為k的直線與橢圓E交于不同兩點(diǎn)P,Q(均異于點(diǎn)A),證明:直線AP與AQ的斜率之和為常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知數(shù)列{an}滿足a1=0,an+1=an+2n,那么a2017的值是( 。
A.20162B.2014×2015C.2015×2016D.2016×2017

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.A、B、C是三個(gè)命題,如果A是B的充要條件,C是B的充分不必要條件,則C是A的充分條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.cos(-300°)=(  )
A.$\frac{{\sqrt{3}}}{2}$B.$-\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案