已知橢圓
x2
3
+
y2
4
=1的上焦點為F,直線x+y-1=0和x+y+1=0與橢圓分別相交于點A,B和C,D,則AF+BF+CF+DF=( 。
分析:利用直線過橢圓的焦點,轉(zhuǎn)化為橢圓的定義去求解.
解答:解:如圖:兩條平行直線分別經(jīng)過橢圓的兩個焦點,連接AF1,F(xiàn)D.
由橢圓的對稱性可知,四邊形AFDF1(其中F1是橢圓的下焦點)為平行四邊形,所以AF1=FD,同理BF1=CF.
所以AF+BF+CF+DF=AF+BF+BF1+AF1=4a=8.
故選D.
點評:本題主要考查了橢圓的方程和橢圓的性質(zhì),綜合性較強.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
3
+
y2
4
=1
的焦點F與拋物線C:y2=2px(p>0)的焦點關(guān)于直線x-y=0對稱.
(Ⅰ)求拋物線的方程;
(Ⅱ)已知定點A(a,b),B(-a,0)(ab≠0,b2≠4a),M是拋物線C上的點,設直線AM,BM與拋物線的另一交點為M1,M2.求證:當M點在拋物線上變動時(只要M1,M2存在且M1≠M2)直線M1M2恒過一定點,并求出這個定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓與雙曲線
x23
-y2=1
有共同的焦點,且過點P(2,3),求雙曲線的漸近線及橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的焦點F1(0,-1),F(xiàn)2(0,1),P為橢圓上一點,且2|F1F2|=|PF1|+|PF2|,則橢圓的方程為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•長寧區(qū)二模)已知△ABC的頂點B、C在橢圓
x2
3
+y2=1上,且BC邊經(jīng)過橢圓的一個焦點,頂點A是橢圓的另一個焦點,則△ABC的周長是
4
3
4
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C以雙曲線
x23
-y2=1
的焦點為頂點,以雙曲線的頂點為焦點.
(1)求橢圓C的方程;
(2)若直線l:y=kx+m與橢圓C相交于點M,N兩點(M,N不是左右頂點),且以線段MN為直徑的圓過橢圓C左頂點A,求證:直線l過定點,并求出該定點的坐標.

查看答案和解析>>

同步練習冊答案