雙曲線8kx2-ky2=8的一個焦點是(0,3),那么k的值是(  )
分析:根據(jù)題意,易得雙曲線的焦點在y軸上,則可將雙曲線的方程化為標準形式,又由焦點坐標為(0,3),則有(-
8
k
)+(-
1
k
)=9,解可得答案.
解答:解:根據(jù)題意,易得雙曲線的焦點在y軸上,
則雙曲線的方程可變形為
y2
-
8
k
-
x2
-
1
k
=1,且k<0;
焦點坐標為(0,3),則有(-
8
k
)+(-
1
k
)=9,
解可得,k=-1;
故選B.
點評:本題考查雙曲線的性質(zhì),需要注意焦點的位置與其標準方程的形式的聯(lián)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標系xOy中,雙曲線8kx2-ky2=8的漸近線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線8kx2-ky2=8的一個焦點為(0,3),則實數(shù)k的值為
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線8kx2-ky2=8的一個焦點是(0,3),那么k的值是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線8kx2-ky2=8的一個焦點為(0,3),則K的值為
-1
-1
,雙曲線的漸近線方程為
y=±2
2
x
y=±2
2
x

查看答案和解析>>

同步練習(xí)冊答案