已知數(shù)列{an}是等比數(shù)列,Sn是其前n項(xiàng)和,則“a1>0”是“S3≥3a2”成立的
充分不必要
充分不必要
條件(選填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”之一)
分析:利用前者推出后者,后者推不出前者,即可判斷充分不必要條件,得到結(jié)果.
解答:解:因?yàn)榈缺葦?shù)列中,奇數(shù)項(xiàng)符號相同,偶數(shù)項(xiàng)符號相同,所以“a1>0”則“a3>0”,
所以a1+a2+a3≥2
a1a3
+a2
=3a2.即“S3≥3a2”成立.
“S3≥3a2”,所以3a2=2
a1a3
+a2
≤|a1|+a2+|a3|,推不出“a1>0”.
所以數(shù)列{an}是等比數(shù)列,Sn是其前n項(xiàng)和,則“a1>0”是“S3≥3a2”成立的充分不必要條件.
故答案為:充分不必要.
點(diǎn)評:本題考查充要條件的判斷,若p⇒q為真命題且q⇒p為真命題,則命題p是命題q的充要條件;若p⇒q為假命題且q⇒p為假命題,則命題p是命題q的即不充分也不必要條件.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義一個“等積數(shù)列”:在一個數(shù)列中,如果每一項(xiàng)與它后一項(xiàng)的積都是同一常數(shù),那么這個數(shù)列叫“等積數(shù)列”,這個常數(shù)叫做這個數(shù)列的公積.已知數(shù)列{an}是等積數(shù)列,且a1=2,公積為5,則這個數(shù)列的前n項(xiàng)和Sn的計(jì)算公式為:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在一個數(shù)列中,如果?n∈N*,都有an•an+1•an+2=k(k為常數(shù)),那么這個數(shù)列叫做等積數(shù)列,k叫做這個數(shù)列的公積.已知數(shù)列{an}是等積數(shù)列,且a1=1,a2=3,公積為27,則a1+a2+a3+…+a18=
78
78

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義“等積數(shù)列”:在一個數(shù)列中,如果每一個項(xiàng)與它的后一項(xiàng)的積都為同一個常數(shù),那末這個數(shù)列叫做等積數(shù)列,這個常數(shù)叫做該數(shù)列的公積.已知數(shù)列{an}是等積數(shù)列,且a1=2,公積為5,Tn為數(shù)列{an}前n項(xiàng)的積,則T2011=
51006
2
51006
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我們對數(shù)列作如下定義,如果?n∈N*,都有anan+1an+2=k(k為常數(shù)),那么這個數(shù)列叫做等積數(shù)列,k叫做這個數(shù)列的公積.已知數(shù)列{an}是等積數(shù)列,且a1=1,a2=2,公積為6,則a1+a2+a3+…+a9=
18
18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列的定義為:在一個數(shù)列中,從第二項(xiàng)起,如果每一項(xiàng)與它的前一項(xiàng)的差都為同一個常數(shù),那么這個數(shù)列叫做等差數(shù)列,這個常數(shù)叫做該數(shù)列的公差.
(1)類比等差數(shù)列的定義給出“等和數(shù)列”的定義;
(2)已知數(shù)列{an}是等和數(shù)列,且a1=2,公和為5,求 a18的值,并猜出這個數(shù)列的通項(xiàng)公式(不要求證明).

查看答案和解析>>

同步練習(xí)冊答案