函數(shù)f(x)=Asin(ωx+?)(A>0,ω>0,|?|<數(shù)學(xué)公式的部分如圖所示,則ω,?的值分別為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
D
分析:根據(jù)圖象,得函數(shù)周期T滿足T=-=,算出周期T從而得到ω的值.再根據(jù)當(dāng)x=時,函數(shù)有最大值,結(jié)合正弦函數(shù)最值點(diǎn)的結(jié)論列式,可算出?的值,從而得到本題的答案.
解答:∵函數(shù)的最大值為1,∴正數(shù)A=1
又∵函數(shù)的周期T滿足T=-=
∴周期T=π,得ω==2
∵當(dāng)x=時,函數(shù)有最大值
∴2•+?=+2kπ,k∈Z
結(jié)合|?|<,取k=0得?=
∴函數(shù)表達(dá)式為f(x)=sin(2x+
故選D
點(diǎn)評:本題給出函數(shù)y=Asin(ωx+φ)的部分圖象,要求我們確定其解析式.著重考查了函數(shù)y=Asin(ωx+φ)的圖象與性質(zhì)的知識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π2
)的一段圖象如圖所示.
(1)求f(x)的解析式;
(2)求f(x)的單調(diào)減區(qū)間,并指出f(x)的最大值及取到最大值時x的集合;
(3)把f(x)的圖象向左至少平移多少個單位,才能使得到的圖象對應(yīng)的函數(shù)為偶函數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=asin(πx+α)+bcos(πx+β)+4(其中a、b、α、β為非零實(shí)數(shù)),若f(2001)=5,則f(2010)的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P(1,
3
)是曲線f(x)=Asin(ωx+φ)(A>0,ω>0|φ|<
π
2
)的一個最高點(diǎn),且f(9-x)=f(9+x),曲線區(qū)間(1,9)內(nèi)與x軸有唯一一個交點(diǎn),求這個函數(shù)的解析式,并作出一個周期的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的圖象如圖:將函數(shù)y=f(x)(x∈R)的圖象向左平移
π
4
個單位,得函數(shù)y=g(x)的圖象(g′(x)為g(x)的導(dǎo)函數(shù)),下面結(jié)論正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示的是定義域?yàn)镽的函數(shù)f(x)=Asin(ωx+φ)(其中ω>0,φ∈[-π,π))的部分圖象,則不等式f(x)>
3
的解集為
 

查看答案和解析>>

同步練習(xí)冊答案