(本題滿(mǎn)分12分)

已知函數(shù)

(1)判斷該函數(shù)在區(qū)間(2,+∞)上的單調(diào)性,并給出證明;

(2)求該函數(shù)在區(qū)間[3,6]上的最大值和最小值.

 

【答案】

(1)在區(qū)間(2,+∞)是減函數(shù),證明:x1,x2是區(qū)間上的任意兩個(gè)實(shí)數(shù),且x1<x2,f(x1)-f(x2)=  -由2< x1 <x2得f (x1)-f (x2)>0,所以函數(shù)在區(qū)間(2,+∞)是減函數(shù)(2)最大值3,最小值

【解析】

試題分析:(1)函數(shù)在區(qū)間(2,+∞)是減函數(shù)       …………2分

證明:設(shè)x1x2是區(qū)間上的任意兩個(gè)實(shí)數(shù),且x1<x2,則

f(x1)-f(x2)=  -                   …………4分

由2< x1 <x2,得x2x1>0,( x1-2) ( x2-2)>0

于是f (x1)-f (x2)>0,f (x1)>f (x2)

函數(shù)在區(qū)間(2,+∞)是減函數(shù).              …………8分

(2)由可知在區(qū)間[3,6]的兩個(gè)端點(diǎn)上分別取得最大值和最小值,即當(dāng)x=3時(shí)取得最大值3,當(dāng)x=6時(shí)取得最小值 .             …………12分

考點(diǎn):定義法判定函數(shù)的單調(diào)性,利用單調(diào)性求最值

點(diǎn)評(píng):定義法判定單調(diào)性的步驟:1,所給區(qū)間取,2,計(jì)算,3,判定差值的正負(fù)號(hào),4,得到函數(shù)單調(diào)性

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

( 本題滿(mǎn)分12分 )
已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿(mǎn)分12分)已知數(shù)列是首項(xiàng)為,公比的等比數(shù)列,,

設(shè),數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿(mǎn)分12分,第1小題6分,第2小題6分)

已知集合A={x| | xa | < 2,xÎR },B={x|<1,xÎR }.

(1) 求A、B

(2) 若,求實(shí)數(shù)a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年安徽省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿(mǎn)分12分)

設(shè)函數(shù)為常數(shù)),且方程有兩個(gè)實(shí)根為.

(1)求的解析式;

(2)證明:曲線(xiàn)的圖像是一個(gè)中心對(duì)稱(chēng)圖形,并求其對(duì)稱(chēng)中心.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年重慶市高三第二次月考文科數(shù)學(xué) 題型:解答題

(本題滿(mǎn)分12分,(Ⅰ)小問(wèn)4分,(Ⅱ)小問(wèn)6分,(Ⅲ)小問(wèn)2分.)

如圖所示,直二面角中,四邊形是邊長(zhǎng)為的正方形,上的點(diǎn),且⊥平面

(Ⅰ)求證:⊥平面

(Ⅱ)求二面角的大小;

(Ⅲ)求點(diǎn)到平面的距離.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案