(本小題滿分12分)

已知函數(shù)

(1)判斷其奇偶性;

(2)指出該函數(shù)在區(qū)間上的單調性并證明;

(3)利用(1)和(2)的結論,指出該函數(shù)在上的增減性.(不用證明)

 

【答案】

(1)是奇函數(shù);(2)上是增函數(shù)。(3)由于上的奇函數(shù),在上又是增函數(shù),因而該函數(shù)在上也是增函數(shù)。

【解析】本題考查的知識點是函數(shù)奇偶性的判斷,函數(shù)單調性的判斷與證明,其中掌握函數(shù)奇偶性與單調性的定義及判定方法是解答本題的關鍵.

(1)由已知易判斷出函數(shù)的定義域為R,關于原點對稱,再判斷f(-x)與f(x)的關系,即可根據(jù)函數(shù)奇偶性的定義,進行判斷得到結論;

(2)任取x1、x2滿足0<x1<x2<1,并做出f(x1)-f(x2)的差,利用實數(shù)的性質,判斷出f(x1)與f(x2)的大小,根據(jù)函數(shù)單調性的定義,即可得到答案;

(3)由(1)可得函數(shù)為奇函數(shù),由(2)可得函數(shù)在(0,1)上為增函數(shù),根據(jù)奇函數(shù)在對稱區(qū)間上單調性相同,即可得到答案.

解:(1)函數(shù)的定義域為…………. 2分

是奇函數(shù)…………. 4分

(2)函數(shù)上是增函數(shù)

證明:設,則

…………. 8分

,

因此函數(shù)上是增函數(shù)………. 10分

(3)由于上的奇函數(shù),在上又是增函數(shù),因而該函數(shù)在

也是增函數(shù)………. 12分

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設平面直角坐標中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1,
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產(chǎn)業(yè)建設工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設.求:

(I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調查和預測,A產(chǎn)品的利潤與投資成正比,其關系如圖1,B產(chǎn)品的利潤與投資的算術平方根成正比,其關系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習冊答案