如圖,平面平面,四邊形為矩形,的中點(diǎn),

(1)求證:;
(2)若時(shí),求二面角的余弦值.
(1)證明過(guò)程詳見(jiàn)解析;(2)

試題分析:本題主要考查線線垂直、線面垂直、面面垂直、向量法等基礎(chǔ)知識(shí),考查學(xué)生的空間想象能力、邏輯推理能力、計(jì)算能力.第一問(wèn),連結(jié)OC,由于為等腰三角形,O為AB的中點(diǎn),所以,利用面面垂直的性質(zhì),得平面ABEF,利用線面垂直的性質(zhì)得,由線面垂直的判定得平面OEC,所以,所以線面垂直的判定得平面,最后利用線面垂直的性質(zhì)得;第二問(wèn),利用向量法,先建立空間直角坐標(biāo)系,求出平面FCE和平面CEB的法向量,再利用夾角公式求二面角的余弦值,但是需要判斷二面角是銳角還是鈍角.
試題解析:(1)證明:連結(jié)OC,因AC=BC,O是AB的中點(diǎn),故
又因平面ABC平面ABEF,故平面ABEF,     2分
于是.又,所以平面OEC,所以,     4分
又因,故平面,所以.     6分
(2)由(1),得,不妨設(shè),,取EF的中點(diǎn)D,以O(shè)為原點(diǎn),OC,OB,OD所在的直線分別為x,y,z軸,建立空間直角坐標(biāo)系,設(shè),則,
在的直線分別為軸,建立空間直角坐標(biāo)系,
從而設(shè)平面的法向量,由,得,                    9分
同理可求得平面的法向量,設(shè)的夾角為,則,由于二面角為鈍二面角,則余弦值為                            13分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,OACBD的交點(diǎn),EPB上任意一點(diǎn).

(1)證明:平面EAC⊥平面PBD;
(2)若PD∥平面EAC,并且二面角B-AE-C的大小為45°,求PDAD的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在長(zhǎng)方體,中,,點(diǎn)在棱AB上移動(dòng).

(Ⅰ)證明:;
(Ⅱ)當(dāng)的中點(diǎn)時(shí),求點(diǎn)到面的距離;
(Ⅲ)等于何值時(shí),二面角的大小為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知斜三棱柱ABC-A′B′C′,設(shè)
AB
=
a
,
AC
=
b
AA′
=
c
,在面對(duì)角線AC′和棱BC上分別取點(diǎn)M、N,使
AM
=k
AC′
BN
=k
BC
(0≤k≤1),求證:三向量
MN
、
a
c
共面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)平面α的一個(gè)法向量為
n1
=(1,2,-2)
,平面β的一個(gè)法向量為
n2
=(-2,-4,k)
,若αβ,則k=( 。
A.2B.-4C.-2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖所示,在三棱錐中,平面,,則與平面所成角的正弦值為_(kāi)_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知正四棱錐P-ABCD的側(cè)棱與底面所成角為60°,MPA中點(diǎn),連接DM,則DM與平面PAC所成角的大小是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知A、B、C三點(diǎn)的坐標(biāo)分別為、、
(1)若的值;  (2)若

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)平面向量,則(     )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案