方程ax+by+c=0中的a,b,c∈{0,1,2,3,4,5,6},且a,b,c互不相同,在所有這些方程表示的直線中,求不同的直線共有多少條.
考點:排列、組合及簡單計數(shù)問題
專題:應(yīng)用題,排列組合
分析:分類討論,利用排列知識,即可得出結(jié)論.
解答: 解:有0時,再從其余6個數(shù)中選2個,除去不符合條件的6個,可得共有3(
A
2
6
-6)=72
;
無0時,再從其余6個數(shù)中選3個,除去不符合條件的6個,可得共有
A
3
6
-6=114

故一共186種.
點評:本題考查排列、組合及簡單計數(shù)問題,考查學(xué)生的計算能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)過兩點A(4,2y+1),B(2,-3)的直線的斜率為-1,則y等于(  )
A、-1B、-3C、0D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對實數(shù)a和b,定義運算“?”:a?b=
a,a≤b
b,a>b
,設(shè)函數(shù)f(x)=x2?(x+2),x∈R,若函數(shù)y=f(x)-c的圖象與x軸恰有三個公共點,則實數(shù)c的取值范圍是( 。
A、[-1,0)
B、(0,1)
C、(-1,0)
D、(-1,0)∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“病毒X”已經(jīng)擴散,威脅著人類.某兩個大國的研究所A、B獨立地研究“病毒X”疫苗,研究所A、B研制成功的概率分別為
1
3
1
4
,且他們是否研制成功互不影響.
(Ⅰ)求疫苗研制成功的概率;
(Ⅱ)若資源共享,則提高了效率,且他們研制成功的概率比獨立地研究時至少有一個研制成功的概率提高了50%.又疫苗研制成功可獲得經(jīng)濟效益a萬元,而資源共享時所得的經(jīng)濟效益只能兩個研究所平均分配.請你給A研究所參謀:是否應(yīng)該采用與B研究所合作的方式來研究疫苗,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知ABCD是空間四邊形,AB=AD,CB=CD,求證:BD⊥AC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心為坐標(biāo)原點,長軸在x軸上,其左、右焦點分別為F1、F2,過橢圓的左焦點且垂直于x軸的直線被橢圓截得的弦長為
2
6
3
,該橢圓的離心率為
6
3
,點P為橢圓上的一點.
(1)求橢圓的標(biāo)準(zhǔn)方程.
(2)若∠F1PF2=
π
4
,求三角形F1PF2的面積.
(3)若∠F1PF2為銳角,求P點的縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四棱錐P-ABCD的底面為菱形,且∠ABC=60°,AB=PC=2,AP=BP=
2

(1)求證:平面PAB⊥平面ABCD
(2)求PD與平面PAB所成角正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y均為實數(shù),a=x2-1,b=
3
2
-x+y2,求證:a,b中至少有一個大于0.(要求反證法證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知ω是正實數(shù),函數(shù)f(x)=4cosωx•sin(ωx+
π
4
)的最小正周期是π.
(Ⅰ)求ω的值;
(Ⅱ)若函數(shù)y=f(x)在區(qū)間[0,a]內(nèi)有且僅有2個零點,求正實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案