5.已知函數(shù)f(x)=$\frac{6}{x-1}$,
(1)判斷函數(shù)f(x)在(1,+∞)上的單調(diào)性并用單調(diào)性的定義證明;
(2)若x∈[2,4],求函數(shù)f(x)值域.

分析 (1)根據(jù)減函數(shù)的定義,設(shè)x1>x2>1,通過作差證明f(x1)<f(x2)即可.
(2)由(1)知函數(shù)f(x)在[2,4]上是減函數(shù),即可求函數(shù)f(x)值域.

解答 解:(1)函數(shù)f(x)在(1,+∞)上是減函數(shù),證明如下:
設(shè)x1>x2>1,則:f(x1)-f(x2)=$\frac{6({x}_{2}-{x}_{1})}{({x}_{1}-1)({x}_{2}-1)}$,
∵x1>x2>1,
∴x2-x1<0,x1-1>0,x2-1>0,
∴f(x1)<f(x2);
∴f(x)在(1,+∞)上是單調(diào)減函數(shù).
(2)由(1)知函數(shù)f(x)在[2,4]上是減函數(shù),
∴f(x)min=f(4)=2,f(x)max=f(2)=6.

點評 考查減函數(shù)的定義,以及根據(jù)減函數(shù)的定義證明一個函數(shù)為減函數(shù)的方法及過程,考查單調(diào)性的運用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若實數(shù)a,b滿足$\frac{1}{a}+\frac{4}=\sqrt{ab}$,則ab的最小值為(  )
A.$\sqrt{2}$B.2C.2$\sqrt{2}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.$(1+x){(1-\sqrt{x})^6}$展開式中x3項系數(shù)為( 。
A.14B.15C.16D.17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知拋物線y2=2x上一點A到焦點F的距離與其到對稱軸的距離之比為9:4,且|AF|>2,點A到原點的距離為(  )
A.$\sqrt{41}$B.4$\sqrt{5}$C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.把4名中學(xué)生分別推薦到3所不同的大學(xué)去學(xué)習(xí),每個大學(xué)至少收一名,全部分完,不同的分配方案數(shù)為36.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.向量$\overrightarrow a=({2,-1}),\overrightarrow b=({x,1})$,若$2\overrightarrow a+\overrightarrow b$與$\overrightarrow b$共線,則x=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在二項式(x3-$\frac{\sqrt{2}}{\sqrt{x}}$)6展開式中項的x4系數(shù)為60.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知是定義在R上的函數(shù),且滿足①f(4)=0;②曲線y=f(x+1)關(guān)于點(-1,0)對稱;③當(dāng)x∈(-4,0)時,$f(x)={log_2}(\frac{x}{{{e^{|x|}}}}+{e^x}-m+1)$,若y=f(x)在x∈[-4,4]上有5個零點,則實數(shù)m的取值范圍為[-3e-4,1)∪{-e-2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知兩點M(2,-3),N(-3,-2),斜率為k的直線l過點P(1,1)且與線段MN相交,則k的取值范圍是(-∞,-4]∪[$\frac{3}{4}$,+∞).

查看答案和解析>>

同步練習(xí)冊答案