(本小題滿分12分)
已知橢圓
的離心率
,過點
和
的直線與原點的距離為
。⑴求橢圓的方程;⑵已知定點
,若直線
與橢圓交于
兩點,問:是否存在
的值,使以
為直徑的圓過
點?請說明理由。
(1)橢圓的方程為
;(2)存在
使得以CD為直徑的圓過點E。
試題分析:(1)直線
方程為
依題意可得:
解得:
∴橢圓的方程為
(2)假設(shè)存在這樣的值。
由
得
∴
設(shè)
而
要使以
為直徑的圓過點
,當且僅當
時
則
即
將(2)代入(3)整理得
經(jīng)驗證
使得(1)成立
綜上可知,存在
使得以CD為直徑的圓過點E。
點評:圓錐曲線的問題一般來說計算量大,對運算能力要求很高,尋求簡潔、合理的運算途徑很重要,在解答時注意以下的轉(zhuǎn)化:⑴若直線與圓錐曲線有兩個交點,對待交點坐標是“設(shè)而不求”的原則,要注意應(yīng)用韋達定理處理這類問題 ; ⑵與弦的重點有關(guān)問題求解常用方法一韋達定理法 二 點差法;
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
已知橢圓M的中心為坐標原點,且焦點在x軸上,若M的一個頂點恰好是拋物線
的焦點,M的離心率
,過M的右焦點F作不與坐標軸垂直的直線
,交M于A,B兩點。
(1)求橢圓M的標準方程;
(2)設(shè)點N(t,0)是一個動點,且
,求實數(shù)t的取值范圍。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
在平面直角坐標系
中,點
到兩定點F
1和F
2的距離之和為
,設(shè)點
的軌跡是曲線
.(1)求曲線
的方程; (2)若直線
與曲線
相交于不同兩點
、
(
、
不是曲線
和坐標軸的交點),以
為直徑的圓過點
,試判斷直線
是否經(jīng)過一定點,若是,求出定點坐標;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知
的頂點
、
分別為雙曲線
的左右焦點,頂點
在雙曲線
上,則
的值等于
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
已知橢圓
,橢圓
以
的長軸為短軸,且與
有相同的離心率.
(1)求橢圓
的方程;
(2)設(shè)O為坐標原點,點A,B分別在橢圓
和
上,
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分12分)
雙曲線的中心為原點
,焦點在
軸上,兩條漸近線分別為
,經(jīng)過右焦點
垂直于
的直線分別交
于
兩點.已知
成等差數(shù)列,且
與
同向.
(Ⅰ)求雙曲線的離心率;
(Ⅱ)設(shè)
被雙曲線所截得的線段的長為4,求雙曲線的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設(shè)拋物線的頂點在原點,準線方程為
,則拋物線方程是( )
查看答案和解析>>