如圖AB為圓O直徑,P為圓O外一點(diǎn),過(guò)P點(diǎn)作PC⊥AB,垂是為C,PC交圓O于D點(diǎn),PA交圓O于E點(diǎn),BE交PC于F點(diǎn)。
(I)求證:∠PFE=∠PAB (II)求證:CD2=CF·CP
(1)利用平行線(xiàn)的性質(zhì)定理來(lái)得到角相等。
(2)根據(jù)三角形的相似來(lái)得到線(xiàn)段的比值,即直角三角形BCF∽直角三角形PCA
得到結(jié)論。
解析試題分析:證明:(1)AB為直徑,C在圓O上,BC⊥AC PC⊥AB
∠PAC=90°-∠P,∠PFC=90°-∠P
∴∠PAB=∠PFE
(2)連結(jié)AD、BD則AD⊥BD Rt△ABD中 CD2=AC·CB
直角三角形BCF∽直角三角形PCA
∴CD2=PC·CF
考點(diǎn):圓內(nèi)的基本性質(zhì)
點(diǎn)評(píng):主要是考查了圓內(nèi)的性質(zhì)以及相似三角形的性質(zhì)的運(yùn)用,屬于基礎(chǔ)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,點(diǎn)是以線(xiàn)段為直徑的圓上一點(diǎn),于點(diǎn),過(guò)點(diǎn)作圓的切線(xiàn),與的延長(zhǎng)線(xiàn)交于點(diǎn),點(diǎn)是的中點(diǎn),連結(jié)并延長(zhǎng)與相交于點(diǎn),延長(zhǎng)與的延長(zhǎng)線(xiàn)相交于點(diǎn).
(Ⅰ)求證:;
(Ⅱ)求證:是圓的切線(xiàn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,已知PA是⊙O相切,A為切點(diǎn),PBC為割線(xiàn),弦CD//AP,AD、BC相交于E點(diǎn),F(xiàn)為CE上一點(diǎn),且
(1)求證:A、P、D、F四點(diǎn)共圓;
(2)若AE·ED=24,DE=EB=4,求PA的長(zhǎng)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,⊙O的半徑OB垂直于直徑AC,M為AO上一點(diǎn),BM的延長(zhǎng)線(xiàn)交⊙O于N,過(guò)N點(diǎn)的切線(xiàn)交CA的延長(zhǎng)線(xiàn)于P.
(1)求證:PM2=PA•PC;
(2)若⊙O的半徑為2,OA=OM,求MN的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,⊙O內(nèi)切△ABC的邊于D、E、F,AB=AC,連接AD交⊙O于點(diǎn)H,直線(xiàn)HF交BC的延長(zhǎng)線(xiàn)于點(diǎn)G.
⑴證明:圓心O在直線(xiàn)AD上;
⑵證明:點(diǎn)C是線(xiàn)段GD的中點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖的三個(gè)頂點(diǎn)都在⊙O上,的平分線(xiàn)與BC邊和⊙O分別交于點(diǎn)D、E.
(1)指出圖中相似的三角形,并說(shuō)明理由;
(2)若,求的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
A.(幾何證明選講選做題)
|
B.(矩陣與變換選做題) 已知M=,N=,設(shè)曲線(xiàn)y=sinx在矩陣MN對(duì)應(yīng)的變換作用下得到曲線(xiàn)F,求F的方程. |
C.(坐標(biāo)系與參數(shù)方程選做題) 在平面直角坐標(biāo)系xOy中,直線(xiàn)m的參數(shù)方程為(t為參數(shù));在以O為極點(diǎn)、射線(xiàn)Ox為極軸的極坐標(biāo)系中,曲線(xiàn)C的極坐標(biāo)方程為ρsinθ=8cosθ.若直線(xiàn)m與曲線(xiàn)C交于A、B兩點(diǎn),求線(xiàn)段AB的長(zhǎng). |
D.(不等式選做題) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,PA為0的切線(xiàn),A為切點(diǎn),PBC是過(guò)點(diǎn)O的割線(xiàn),PA ="10,PB" =5、
(I)求證:;
(2)求AC的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分10分)選修4—1:幾何證明選講
如圖,是⊙的直徑,是弦,∠BAC的平分線(xiàn)交⊙于,交延長(zhǎng)線(xiàn)于點(diǎn),交于點(diǎn).
(1)求證:是⊙的切線(xiàn);
(2)若,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com