如圖,在三棱錐中,,,,.
(Ⅰ)求證;
(Ⅱ)求二面角的大;
(Ⅲ)求點到平面的距離.
(Ⅰ)略,(Ⅱ),(Ⅲ)
解法一
(Ⅰ)取中點,連結(jié).
,
.
,
.
,
平面.
平面,
.
(Ⅱ),,
.
又,
.
又,即,且,
平面.
取中點.連結(jié).
,.
是在平面內(nèi)的射影,
.
是二面角的平面角.
在中,,,,
.
二面角的大小為.
(Ⅲ)由(Ⅰ)知平面,
平面平面.
過作,垂足為.
平面平面,
平面.
的長即為點到平面的距離.
由(Ⅰ)知,又,且,
平面.
平面,
.
在中,,,
.
.
點到平面的距離為.
解法二
(Ⅰ),,
.
又,
.
,
平面.
平面,
.
(Ⅱ)如圖,以為原點建立空間直角坐標(biāo)系.
則.
設(shè).
,
,.
取中點,連結(jié).
,,
,.
是二面角的平面角.
,,,
.
二面角的大小為.
(Ⅲ),
在平面內(nèi)的射影為正的中心,且的長為點到平面的距離.
如(Ⅱ)建立空間直角坐標(biāo)系.
,
點的坐標(biāo)為.
.
點到平面的距離為.
科目:高中數(shù)學(xué) 來源:2013屆廣西玉林市高二下學(xué)期三月月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,在三棱錐中,側(cè)面與側(cè)面均為等邊三角形,,為中點.
(Ⅰ)證明:平面;
(Ⅱ)求二面角的余弦值. (本題12分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省臺州市高三上學(xué)期期末理科數(shù)學(xué)試卷 題型:解答題
如圖,在三棱錐中, 兩兩垂直且相等,過的中點作平面∥,且分別交于,交的延長線于.
(Ⅰ)求證:平面;
(Ⅱ)若,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011---2012學(xué)年四川省高二10月考數(shù)學(xué)試卷 題型:解答題
如圖:在三棱錐中,已知點、、分別為棱、、的中點.
(Ⅰ)求證:∥平面;
(Ⅱ)若,,求證:平面⊥平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:黑龍江省2013屆高一下學(xué)期期末考試數(shù)學(xué)(理) 題型:解答題
如圖,在三棱錐中,,為中點。(1)求證:平面
(2)在線段上是否存在一點,使二面角的平面角的余弦值為?若存在,確定點位置;若不存在,說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com