分析:(1)再寫一式,兩式相減,可得數(shù)列{a
n}是以8為首項(xiàng),4為公比的等比數(shù)列,由此可求數(shù)列{a
n}通項(xiàng)公式;
(2)確定數(shù)列{b
n}的通項(xiàng),進(jìn)而可求數(shù)列{b
n}的前n項(xiàng)和,利用裂項(xiàng)法,可求數(shù)列{
}的前n項(xiàng)和.
解答:解:(1)∵3S
n=4a
n-8,①
∴當(dāng)n≥2時(shí),3S
n-1=4a
n-1-8②
①-②得,3(S
n-S
n-1)=4a
n-4a
n-1,∴a
n=4a
n-1,
n=1時(shí),3S
1=4a
1-8,∴a
1=8
∴數(shù)列{a
n}是以8為首項(xiàng),4為公比的等比數(shù)列
∴a
n=2
2n+1;
(2)b
n=log
2a
n=2n+1,∴T
n=
=n(n+2)
∴
==
(-)∴數(shù)列{
}的前n項(xiàng)和為
(1-
+
-+
-+…+
-)=
(1+--)=
點(diǎn)評:本題考查數(shù)列遞推式,考查數(shù)列的通項(xiàng)與求和,確定數(shù)列的通項(xiàng),利用裂項(xiàng)法求和是關(guān)鍵.