分析 (1)在二項式($\root{3}{x}$-$\frac{1}{2\root{3}{x}}$)n的展開式的通項公式中,令r=5,可得x的系數(shù)為0,求得n的值.再在二項式中,令x=1,可得展開式中各項系數(shù)的和.
(2)利用二項式系數(shù)的性質,求得要求式子的值.
(3)設第r+1項的系數(shù)最大,利用通項公式列出不等式組,求得r的范圍,可得結論.
解答 解:(1)二項式($\root{3}{x}$-$\frac{1}{2\root{3}{x}}$)n的展開式的通項公式為Tr+1=${C}_{n}^{r}$•${(-\frac{1}{2})}^{r}$•${x}^{\frac{n-2r}{3}}$,
令r=5,可得$\frac{n-2r}{3}$=0,求得n=10.
令x=1,可得展開式中各項系數(shù)的和${(1-\frac{1}{2})}^{10}$=$\frac{1}{1024}$.
(2)原式=C${\;}_{2}^{2}$+C${\;}_{3}^{2}$+C${\;}_{4}^{2}$+…+C${\;}_{n}^{2}$=${C}_{3}^{3}$+C${\;}_{3}^{2}$+C${\;}_{4}^{2}$+…+${C}_{10}^{2}$=${C}_{11}^{3}$=165.
(3)由$\left\{\begin{array}{l}{{C}_{10}^{r}{{•(-\frac{1}{2})}^{r}≥C}_{10}^{r-1}{•(-\frac{1}{2})}^{r-1}}\\{{C}_{10}^{r}{{•(-\frac{1}{2})}^{r}≥C}_{10}^{r+1}{•(-\frac{1}{2})}^{r+1}}\end{array}\right.$,求得 $\frac{8}{3}≤r≤\frac{11}{3}$,∴r=3,
∴展開式中系數(shù)絕對值最大的項為T4=-15${x}^{\frac{4}{3}}$.
點評 本題主要考查二項式定理的應用,二項展開式的通項公式,二項式系數(shù)的性質,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)=sinx | B. | f(x)=-|x+1| | ||
C. | $f(x)=ln\frac{2-x}{2+x}$ | D. | f(x)=$\frac{1}{2}$(ax+a-x),(a>0,a≠1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $±\frac{1}{2}$ | B. | $±\frac{{\sqrt{3}}}{2}$ | C. | $-\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=log2x | B. | $y=-\sqrt{x}$ | C. | $y={(\frac{1}{2})^x}$ | D. | $y=\frac{1}{x}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com