【題目】在奧運(yùn)知識(shí)有獎(jiǎng)問(wèn)答競(jìng)賽中,甲、乙、丙三人同時(shí)回答一道有關(guān)奧運(yùn)知識(shí)的問(wèn)題,已知甲答對(duì)這道題的概率是,甲、乙兩人都回答錯(cuò)誤的概率是,乙、丙兩人都回答正確的概率是.設(shè)每人回答問(wèn)題正確與否相互獨(dú)立的.
(Ⅰ)求乙答對(duì)這道題的概率;
(Ⅱ)求甲、乙、丙三人中,至少有一人答對(duì)這道題的概率.
【答案】(Ⅰ);(Ⅱ).
【解析】分析:(Ⅰ)設(shè)乙答對(duì)這道題的概率為,由對(duì)立事件概率關(guān)系和相互獨(dú)立事件概率乘法公式,求出乙答對(duì)這道題的概率;
(Ⅱ)設(shè)丙答對(duì)這道題的概率,由相互獨(dú)立事件概率乘法公式,求出丙答對(duì)這道題的概率和甲、乙、丙三人都回答錯(cuò)誤的概率,再由對(duì)立事件的概率公式,求得答案.
詳解:解:(Ⅰ)記甲、乙、丙3人獨(dú)自答對(duì)這道題分別為事件,
設(shè)乙答對(duì)這道題的概率,
由于每人回答問(wèn)題正確與否是相互獨(dú)立的,因此是相互獨(dú)立事件.
由題意,并根據(jù)相互獨(dú)立事件同時(shí)發(fā)生的概率公式,
得
解得,
所以,乙對(duì)這道題的概率為
(Ⅱ)設(shè)“甲、乙、丙、三人中,至少有一人答對(duì)這道題”為事件,丙答對(duì)這道題的概率.
由(Ⅰ),并根據(jù)相互獨(dú)立事件同時(shí)發(fā)生的概率公式,
得,
解得
甲、乙、丙三人都回答錯(cuò)誤的概率為
因?yàn)槭录?/span>“甲、乙、丙三人都回答錯(cuò)誤”與事件“甲、乙、丙三人中,至少有一人答對(duì)這道題”是對(duì)立事件,
所以,所求事件概率為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》中有如下問(wèn)題:今有蒲生一日,長(zhǎng)三尺,莞生一日,長(zhǎng)1尺.蒲生日自半,莞生日自倍.問(wèn)幾何日而長(zhǎng)等?意思是:今有蒲第一天長(zhǎng)高3尺,莞第一天長(zhǎng)高1尺,以后蒲每天長(zhǎng)高前一天的一半,莞每天長(zhǎng)高前一天的2倍.若蒲、莞長(zhǎng)度相等,則所需時(shí)間為()
(結(jié)果精確到0.1.參考數(shù)據(jù):lg2=0.3010,lg3=0.4771.)
A.2.6天B.2.2天C.2.4天D.2.8天
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形是平行四邊形,平面平面,,,,,,,為的中點(diǎn).
(1)求證:平面;
(2)求證:平面平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在底面為矩形的四棱錐中,,,且,其中分別是線段的中點(diǎn)。
(1)證明:平面
(2)證明:平面
(3)求:直線與平面所成角的正弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)二次函數(shù)f(x)=ax2+bx.
(1)若1≤f(-1)≤2,2≤f(1)≤4,求f(-2)的取值范圍;
(2)當(dāng)b=1時(shí),若對(duì)任意x∈[0,1],-1≤f(x)≤1恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(坐標(biāo)系與參數(shù)方程選做題)
已知曲線C的參數(shù)方程為 (t為參數(shù)),C在點(diǎn)(1,1)處的切線為l,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,則l的極坐標(biāo)方程為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知六棱錐的底面是正六邊形,平面,,給出下列結(jié)論:
①;
②直線平面;
③平面平面;
④異面直線與所成角為;
⑤直線與平面所成角的余弦值為.
其中正確的有_______(把所有正確的序號(hào)都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD與正三角形BCE的邊長(zhǎng)均為2,且平面ABCD⊥平面BCE,平面ABCD,.
(I)求證:平面ABCD;
(II)求證:平面ACF⊥平面BDF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形OABC中,O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(10,0),點(diǎn)C的坐標(biāo)為(0,10),分別將線段OA和AB十等分,分點(diǎn)分別記為A1 , A2 , …,A9和B1 , B2 , …,B9 , 連接OBi , 過(guò)Ai作x軸的垂線與OBi , 交于點(diǎn) .
(1)求證:點(diǎn) 都在同一條拋物線上,并求拋物線E的方程;
(2)過(guò)點(diǎn)C作直線l與拋物線E交于不同的兩點(diǎn)M,N,若△OCM與△OCN的面積之比為4:1,求直線l的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com