設(shè)數(shù)列{an}是等差數(shù)列,{bn}是各項(xiàng)都為正數(shù)的等比數(shù)列,且a1=b1=1,a3+b3=9,a5+b2=11
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ只限文班做)求數(shù)列{
1
anan+1
}
的前n項(xiàng)和Tn
(Ⅱ只限理班做)求數(shù)列{
an
bn
}
的前n項(xiàng)和Tn
考點(diǎn):數(shù)列的求和
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:(Ⅰ)由已知條件,利用等差數(shù)列和等比數(shù)列的通項(xiàng)公式列出方程組,分別求出等差數(shù)列的公差和等比數(shù)列的公比,由此能求出數(shù)列{an},{bn}的通項(xiàng)公式.
(Ⅱ文科)由an=2n-1,利用裂項(xiàng)求和法能求出數(shù)列{
1
anan+1
}
的前n項(xiàng)和Tn
(Ⅱ理科)由an=2n-1,bn=2n-1,得到
an
bn
=
2n-1
2n-1
,利用錯(cuò)位相減法能求出數(shù)列{
an
bn
}
的前n項(xiàng)和Tn
解答: 解:(Ⅰ)設(shè){an}的公差為d,{bn}的公比為q (q>0).
∵數(shù)列{an}是等差數(shù)列,{bn}是各項(xiàng)都為正數(shù)的等比數(shù)列,
且a1=b1=1,a3+b3=9,a5+b2=11,
(1+2d)+q2=9
(1+4d)+q=11
,
解得
q=2
d=2

an=2n-1,bn=2n-1
(Ⅱ文科)∵an=2n-1,
∴Tn=
1
a1a2
+
1
a2a3
+…+
1
anan+1

=
1
1×3
+
1
3×5
+
1
5×7
+…+
1
(2n-1)×(2n+1)

=
1
2
[(1-
1
3
)+(
1
3
-
1
5
)+…+(
1
2n-1
-
1
2n+1
)]
=
1
2
(1-
1
2n+1

=
n
2n+1

(Ⅱ理科)∵an=2n-1,bn=2n-1
an
bn
=
2n-1
2n-1
,
Tn=
1
20
+
3
21
+
5
22
+
+
2n-1
2n-1
,①
1
2
Tn=
1
21
+
3
22
+
+
2n-3
2n-1
+
2n-1
2n
,②
由①-②得 
1
2
Tn=
1
20
+
2
21
+
2
22
+…+
2
2n-1
共n-1項(xiàng)
-
2n-1
2n

=1+
(1-
1
2n-1
)
1-
1
2
-
2n-1
2n
=3-
3+2n
2n
,
Tn=6-
3+2n
2n-1
點(diǎn)評(píng):本題考查數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意裂項(xiàng)求和法和錯(cuò)位相減法的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有如下命題:
①若0<a<1,?x<0,則ax>1;
②若函數(shù)y=loga(x-1)+1的圖象過(guò)定點(diǎn)p(m,n),則logmn=0;
③函數(shù)y=x-1的單調(diào)遞減區(qū)間為(-∞,0)∪(0,+∞);
④?x∈R,tanx=2011.
其中真命題的個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于每個(gè)非零自然數(shù)n,拋物線(xiàn)y=x2-
2n+1
n2+n
x+
1
n2+n
與x軸交于An、Bn兩點(diǎn),以AnBn表示這兩點(diǎn)間的距離,則A1B1+A2B2+…+A2014B2014的值是( 。
A、
2014
2013
B、
2013
2014
C、
2015
2014
D、
2014
2015

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b∈R且a≠b,若aea=beb(e為自然對(duì)數(shù)的底數(shù)),則下列正確的是( 。
A、lna-lnb=b-a
B、lna-lnb=a-b
C、ln(-a)-ln(-b)=b-a
D、ln(-a)-ln(-b)=a-b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某中學(xué)從某次考試成績(jī)中抽取若干名學(xué)生的分?jǐn)?shù),并繪制成如圖的頻率分布直方圖.樣本數(shù)據(jù)分組為[50,60),[60,70),[70,80),[80,90),[90,100].若用分層抽樣的方法從樣本中抽取分?jǐn)?shù)在[80,100]范圍內(nèi)的數(shù)據(jù)16個(gè),則其中分?jǐn)?shù)在[90,100]范圍內(nèi)的樣本數(shù)據(jù)有( 。
A、5個(gè)B、6個(gè)C、8個(gè)D、10個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(x)=ax2+bx+c是奇函數(shù),求a、b、c需滿(mǎn)足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)ξ為隨機(jī)變量,從棱長(zhǎng)為1的正方體ABCD-A1B1C1D1的八個(gè)頂點(diǎn)中任取四個(gè)點(diǎn),當(dāng)四點(diǎn)共面時(shí),ξ=0,當(dāng)四點(diǎn)不共面時(shí),ξ的值為四點(diǎn)組成的四面體的體積.
(1)求概率P(ξ=0);
(2)求ξ的分布列,并求其數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正四面體ABCD邊長(zhǎng)為2.E,F(xiàn)分別為AC,BD中點(diǎn).
(Ⅰ)求證:AC⊥平面EFD;
(Ⅱ)求二面角E-FD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題:
①函數(shù)f(x)=3sin(2x-
π
3
)的圖象關(guān)于點(diǎn)(-
π
6
,0)對(duì)稱(chēng);
②若a≥b>-1,則
a
1+a
b
1+b

③存在唯一的實(shí)數(shù)x,使x3+x2+1=0;
④已知P為雙曲線(xiàn)x2-
y2
9
=1上一點(diǎn),F(xiàn)1、F2分別為雙曲線(xiàn)的左右焦點(diǎn),且|PF2|=4,則|PF1|=2或6.
其中正確命題的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案