若函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<π)的圖象(部分)如圖所示,則ω和φ的取值分別是
 

考點(diǎn):由y=Asin(ωx+φ)的部分圖象確定其解析式
專題:計(jì)算題,三角函數(shù)的圖像與性質(zhì)
分析:
1
4
T=π可求得ω,再由(-
π
3
)•ω+φ=0可求得φ,從而可得答案.
解答: 解:由f(x)=sin(ωx+φ)的部分圖象可知,
1
4
T=π,
∴T=4π,又T=
ω
,
∴ω=
1
2
;
又(-
π
3
)×
1
2
+φ=0,
∴φ=
π
6
,符合0<φ<π.
故答案為:
1
2
,
π
6
點(diǎn)評(píng):本題考查由y=Asin(ωx+φ)的部分圖象確定其解析式,考查識(shí)圖用圖的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-2x>0},B={x|1<x<
5
},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)命題p:函數(shù)f(x)=x3-ax-1在區(qū)間[-1,1]上單調(diào)遞減命題q:存在x∈R,使等式x2+ax+1=0成立,如果命題p或q為真命題,p且q為假命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知2<loga 
1
2
,a的范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某市為了了解本市高中學(xué)生的漢字書寫水平,在全市范圍內(nèi)隨機(jī)抽取了近千名學(xué)生參加漢字聽寫考試,將所得數(shù)據(jù)進(jìn)行分組,分組區(qū)間為:[50,60),[60,70),[70,80),[80,90),[90,100],并繪制出頻率分布直方圖,如圖所示.
(Ⅰ)求頻率分布直方圖中的a值;從該市隨機(jī)選取一名學(xué)生,試估計(jì)這名學(xué)生參加考試的成績低于90分的概率;
(Ⅱ)設(shè)A,B,C三名學(xué)生的考試成績在區(qū)間[80,90)內(nèi),M,N兩名學(xué)生的考試成績在區(qū)間[60,70)內(nèi),現(xiàn)從這5名學(xué)生中任選兩人參加座談會(huì),求學(xué)生M,N至少有一人被選中的概率;
(Ⅲ)試估計(jì)樣本的中位數(shù)落在哪個(gè)分組區(qū)間內(nèi)(只需寫出結(jié)論).
(注:將頻率視為相應(yīng)的概率)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=2,分別求出下列各式的值.
(1)sinα;
(2)
4sinα-2cosα
5sinα+3cosα
;
(3)
1+sinα•cosα
cos2α-sin2α
;
(4)sinα•cosα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=f(x)的圖象與x軸有兩個(gè)交點(diǎn),它們之間的距離為4,且滿足f(3+x)=f(3-x),該函數(shù)的最小值是-3,則
(1)求該函數(shù)的解析式;
(2)寫出函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖空間幾何體ABCDEF中,四邊形ADEF為平行四邊形,F(xiàn)B⊥平面ABCD,AB∥CD,AB⊥BC,AB=BC=
1
2
CD.
(1)求證:直線CE∥平面ABF;
(2)求證:平面CDE⊥平面ABCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖的形狀和尺寸如圖所示,則其體積是( 。
A、
64
3
B、
44
3
C、
32
3
D、
32+8
2
3

查看答案和解析>>

同步練習(xí)冊答案