4.若不等式$a<x+\frac{4}{x}$對(duì)?x∈(0,+∞)恒成立,則實(shí)數(shù)a的取值范圍是(-∞,4).

分析 當(dāng)x>0時(shí),$x+\frac{4}{x}$≥2$\sqrt{x•\frac{4}{x}}$=4,當(dāng)且僅當(dāng)x=$\frac{4}{x}$時(shí)取等號(hào),由此能求出實(shí)數(shù)a的取值范圍.

解答 解:∵不等式$a<x+\frac{4}{x}$對(duì)?x∈(0,+∞)恒成立,
又當(dāng)x>0時(shí),$x+\frac{4}{x}$≥2$\sqrt{x•\frac{4}{x}}$=4,
當(dāng)且僅當(dāng)x=$\frac{4}{x}$時(shí)取等號(hào),
∴實(shí)數(shù)a的取值范圍是(-∞,4).
故答案為:(-∞,4).

點(diǎn)評(píng) 本題考查實(shí)數(shù)的取值范圍的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意均值不等式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{5}}}{5}$,短半軸的長(zhǎng)為2.
(1)求橢圓C的方程;
(2)若橢圓C的左焦點(diǎn)為F,上頂點(diǎn)為A,與直線FA平行的直線l與橢圓C相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=|x+3|+|x-2|
(Ⅰ)若?x∈R,f(x)≥6a-a2恒成立,求實(shí)數(shù)a的取值范圍
(Ⅱ)求函數(shù)y=f(x)的圖象與直線y=9圍成的封閉圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)函數(shù)f(x)=t|x-t|(t≠0)在區(qū)間(-∞,-1]上單調(diào)遞增,則t的取值范圍是(  )
A.(-∞,-1]B.[-1,0)C.(0,1]D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.函數(shù) y=$\frac{1}{2}{x^2}-2$在點(diǎn)(1,-$\frac{3}{2}$)處的切線方程為2x-2y-5=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.函數(shù)y=e2x-1的零點(diǎn)是0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.如圖,四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD為正方形,則下列結(jié)論:
①AD∥平面PBC;
②平面PAC⊥平面PBD;
③平面PAB⊥平面PAC;
④平面PAD⊥平面PDC.
其中正確的結(jié)論序號(hào)是①②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.將正方形ABCD沿對(duì)角線AC折起成直二面角,則直線BD和平面ABC所成的角的大小為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知集合A={x||x|>2},B={x|x2-3x<0},則A∪B=( 。
A.(-∞,-2)∪(0,+∞)B.(-∞,0)∪(2,+∞)C.(2,3)D.(-2,3)

查看答案和解析>>

同步練習(xí)冊(cè)答案