設(shè)數(shù)列{an}的前n項(xiàng)和為Sn(n∈Z*),關(guān)于數(shù)列{an}有下列三個命題:

①若{an}既是等差數(shù)列又是等比數(shù)列,則an=an+1(n∈N*);?

②若Sn=an2+bn(a、b∈R),則{an}為等差數(shù)列;

③若Sn=1-(-1)n則{an}是等比數(shù)列.

這些命題中正確命題的序號是___________.

分析:說明命題為真命題需證明,說明一個命題為假命題,只需舉一個反例.

解析:(1)∵{an}為等差數(shù)列,設(shè)公差為d,則由題意an-d ,an,an+d為等比數(shù)列,?

an2=(an-d)(an+d).?

d=0正確,∴①正確.?

(2)當(dāng)n=1時,a1=S1=a+b;?

當(dāng)n≥2時,an=Sn-Sn-1=2an-a+b.?

n=1適合上式,

an=2an-a+b.?

an+1-an=2a(常數(shù)),?

∴{an}為等差數(shù)列.?

(3)同(2)得an =(-1)n-1·2,而(常數(shù)).?

∴{an}是等比數(shù)列.

答案:①②③

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)的和為Sn,且Sn=3n+1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=an(2n-1),求數(shù)列{bn}的前n項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列an的前n項(xiàng)的和為Sn,a1=
3
2
Sn=2an+1-3

(1)求a2,a3
(2)求數(shù)列an的通項(xiàng)公式;
(3)設(shè)bn=(2log
3
2
an+1)•an
,求數(shù)列bn的前n項(xiàng)的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的關(guān)系式;
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)證明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式組
x≥0
y≥0
nx+y≤4n
所表示的平面區(qū)域?yàn)镈n,若Dn內(nèi)的整點(diǎn)(整點(diǎn)即橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點(diǎn))個數(shù)為an(n∈N*
(1)寫出an+1與an的關(guān)系(只需給出結(jié)果,不需要過程),
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)數(shù)列an的前n項(xiàng)和為SnTn=
Sn
5•2n
,若對一切的正整數(shù)n,總有Tn≤m成立,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•鄭州一模)設(shè)數(shù)列{an}的前n項(xiàng)和Sn=2n-1,則
S4
a3
的值為( 。

查看答案和解析>>

同步練習(xí)冊答案