分析 (1)由$2{S_n}+{a_n}={n^2}+2n+2$,得$2{S_{n+1}}+{a_{n+1}}={(n+1)^2}+2(n+1)+2$,兩式相減得3an+1-an=2n+3,又bn=an-n,可得3bn+1=bn,利用等比數(shù)列的通項(xiàng)公式即可得出.
(2)由(1)得${b_n}=\frac{2}{3^n}$,可得${b_{2n+1}}=\frac{2}{{{3^{2n+1}}}}$,可得${log_3}{b_{2n+1}}={log_3}\frac{2}{{{3^{2n+1}}}}={log_3}2-(2n+1)$,再利用等差數(shù)列的求和公式即可得出.
解答 解:(1)由$2{S_n}+{a_n}={n^2}+2n+2$,
得$2{S_{n+1}}+{a_{n+1}}={(n+1)^2}+2(n+1)+2$,
兩式相減得3an+1-an=2n+3…(2分)
∵bn=an-n,
∴an=bn+n,an+1=bn+1+n+1
∴3bn+1=bn…..(4分)
又n=1時(shí),由$2{S_n}+{a_n}={n^2}+2n+2$得${a_1}=\frac{5}{3}$,
∴${b_1}={a_1}-1=\frac{2}{3}$,
∴{bn}是以$\frac{2}{3}$為首項(xiàng),$\frac{1}{3}$為公比的等比數(shù)列
∴${b_n}=\frac{2}{3^n}$….(7分)
(2)由(1)得${b_n}=\frac{2}{3^n}$,∴${b_{2n+1}}=\frac{2}{{{3^{2n+1}}}}$,
∴${log_3}{b_{2n+1}}={log_3}\frac{2}{{{3^{2n+1}}}}={log_3}2-(2n+1)$,
∴l(xiāng)og3b3+log3b5+…+log3b2n+1
=log32-3+log32-5+…+log32-(2n+1)
=$n{log_3}2-\frac{(3+2n+1)n}{2}$
=nlog32-n(n+2).
點(diǎn)評(píng) 本題考查了數(shù)列遞推關(guān)系、等差數(shù)列與等比數(shù)列的通項(xiàng)公式與求和公式、對(duì)數(shù)運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)在$(-\frac{π}{4},\frac{π}{6})$單調(diào)遞增 | B. | f(x)在$(\frac{π}{4},\frac{3}{4}π)$單調(diào)遞增 | ||
C. | f(x)在$(-\frac{π}{4},\frac{π}{6})$單調(diào)遞減 | D. | f(x)在$(\frac{π}{4},\frac{3}{4}π)$單調(diào)遞減 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=±$\frac{3}{2}$x | B. | y=±$\frac{{\sqrt{3}}}{2}$x | C. | y=±3x | D. | y=±$\sqrt{3}$x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=ex | B. | $y=\frac{1}{x^2}$ | C. | $y=x+\frac{1}{x}$ | D. | y=cosx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 一解 | B. | 兩解 | C. | 無解 | D. | 不能確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1+$\sqrt{2}$ | B. | 2 | C. | 3-$\sqrt{2}$ | D. | 4 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com