寫出下列向量的坐標表示,并在如圖所示的正方形網(wǎng)格圖中作出下列向量(以O為起點).
(1)
a
=-4
i
-3
j
;  
(2)
b
=2
i
;  
(3)
c
=-
5
j
考點:向量的幾何表示
專題:平面向量及應用
分析:直接利用向量與坐標的對應關系寫出結果,在坐標系中標出即可.
解答: 解:(1)
a
=-4
i
-3
j
;對應坐標為(-4,-3)
(2)
b
=2
i
;對應坐標為(0,2)
(3)
c
=-
5
j
.對應坐標為(0,-
5

圖象如圖:
點評:本題考查向量的基本知識的應用,是基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知集合A={x|-1<x≤3},B={x|1≤x<6},求∁R(A∪B)、∁R(A∩B)、(∁RA)∩B、A∪(∁RB).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

命題“對于任意實數(shù)x,都有x≤1”的否定是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

物體的運動方程是s=-
1
6
t3+2t2-5,求物體在t=3時的速度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=1-
2
2x+1

(1)證明f(x)是奇函數(shù);
(2)判斷f(x)的單調(diào)性,并用定義證明;
(3)求f(x)在[-1,2]上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知0<α<
π
2
,tan
α
2
+
1
tan
α
2
=5,求sin(α-
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示是長方體截去一個角后得到的幾何體,其中底面ABCD是邊長為2
3
的正方形,且高BE=2,H為AG中點.
(1)求四棱錐E-ABCD的體積;
(2)正方形ABCD內(nèi)(包括邊界)是否存在點M,使三棱錐H-AMB體積是四棱錐E-ABCD體積的
1
8
?若存在,請指出滿足要求的點M的軌跡,并在圖中畫出軌跡圖形;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡:(ex+e-x-4)
1
2
+[(ex-e-x)2+4]
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

記(1+
x
2
)(1+
x
22
)…(1+
x
2n
)的展開式中,x的系數(shù)為an,x2的系數(shù)為bn,其中x∈N*
(1)求an,bn;                                                                    
(2)是否存在常數(shù)p、q(p<q),使bn=
1
3
(1+
p
2n
)(1+
q
2n
),對n∈N*,n≥2恒成立?

查看答案和解析>>

同步練習冊答案