在平面直角坐標系中,四邊形ABCD在映射f:(x,y)→(2y,1-x)作用下的象集為四邊形A′B′C′D′,若ABCD的面積S=1,則A'B′C′D′的面積S'=   
【答案】分析:由題意可知映射是左右平移和縱坐標的伸縮變換,通過變換,得到面積的關系即可求出選項.
解答:解:因為映射f:(x,y)→(2y,1-x)之間的一一對應是純一次函數(shù)的線性關系,
所以這種作用相當于是將縱坐標向左平移1個單位,縱坐標變?yōu)闉樵瓉淼膬杀叮?br />所以S′=S=1⇒S=2 
故答案為2.
點評:本題是基礎題,實質(zhì)上考查圖象的變換,平移與伸縮變換,常用方法:如果映射f:(x,y)→(ay,1-bx),則S′=|a||b|S 這種方法比較抽象.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,以O為極點,x正半軸為極軸建立極坐標系,曲線C的極坐標方程為:pcos(θ-
π3
)=1
,M,N分別為曲線C與x軸,y軸的交點,則MN的中點P在平面直角坐標系中的坐標為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)設α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,如果x與y都是整數(shù),就稱點(x,y)為整點,下列命題中正確的是
 
(寫出所有正確命題的編號).
①存在這樣的直線,既不與坐標軸平行又不經(jīng)過任何整點
②如果k與b都是無理數(shù),則直線y=kx+b不經(jīng)過任何整點
③直線l經(jīng)過無窮多個整點,當且僅當l經(jīng)過兩個不同的整點
④直線y=kx+b經(jīng)過無窮多個整點的充分必要條件是:k與b都是有理數(shù)
⑤存在恰經(jīng)過一個整點的直線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,下列函數(shù)圖象關于原點對稱的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,以點(1,0)為圓心,r為半徑作圓,依次與拋物線y2=x交于A、B、C、D四點,若AC與BD的交點F恰好為拋物線的焦點,則r=
 

查看答案和解析>>

同步練習冊答案