精英家教網 > 高中數學 > 題目詳情
2.如圖,平面ABEF⊥平面ABC,四邊形ABEF為矩形,AC=BC.O為AB的中點,OF⊥EC.
(Ⅰ)求證:OE⊥FC:
(Ⅱ)若$\frac{AC}{AB}$=$\frac{\sqrt{3}}{2}$時,求二面角F-CE-B的余弦值.

分析 (Ⅰ)連結OC,則OC⊥AB,從而得到OC⊥OF,進而得到OF⊥OE,由此能證明OE⊥FC.
(Ⅱ)由(I)得AB=2AF.不妨設AF=1,AB=2建立空間坐標系,求出平面的法向量,利用向量法即可.

解答 (Ⅰ)證明:連結OC,∵AC=BC,O是AB的中點,
故OC⊥AB.  
又∵平面ABC⊥平面ABEF,
故OC⊥平面ABE,于是OC⊥OF.
又OF⊥EC,∵OF⊥平面OEC,
∴OF⊥OE,
又∵OC⊥OE,∴OE⊥平面OFC,
∴OE⊥FC;
(Ⅱ)解:由(I)得AB=2AF.不妨設AF=1,AB=2,
∵$\frac{AC}{AB}$=$\frac{\sqrt{3}}{2}$,∴AC=$\sqrt{3}$,則OC=$\sqrt{2}$
建立以O為坐標原點,OC,OB,OD分別為x,y,z軸的空間直角坐標系如圖:
則F(0,-1,1),E(0,1,1),B(0,1,0),C($\sqrt{2}$,0,0),則
$\overrightarrow{CE}$=(-$\sqrt{2}$,1,1),$\overrightarrow{EF}$=(0,-2,0),
設平面FCE的法向量為$\overrightarrow{m}$=(x,y,z),
則$\left\{\begin{array}{l}{-\sqrt{2}x+y+z=0}\\{-2y=0}\end{array}\right.$.
∴$\overrightarrow{m}$=(1,0,$\sqrt{2}$),
∵$\overrightarrow{BE}$=(0,0,1),$\overrightarrow{BC}$=($\sqrt{2}$,-1,0),
∴同理可得平面CEB的法向量為$\overrightarrow{n}$=(1,$\sqrt{2}$,0),
∴cos<$\overrightarrow{m}$,$\overrightarrow{n}$>=$\frac{1}{\sqrt{3}×\sqrt{3}}$=$\frac{1}{3}$,
∵二面角F-CE-B是鈍二面角,
∴二面角F-CE-B的余弦值為-$\frac{1}{3}$.

點評 本題考查異面直線垂直的證明,考查二面角的余弦值的求法,考查向量方法的運用,解題時要認真審題,注意空間思維能力的培養(yǎng).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

19.已知數列{an}當n≥2時滿足$\frac{2}{{a}_{n}}$=$\frac{1}{{a}_{n-1}}$+$\frac{1}{{a}_{n+1}}$,且a3a5a7=$\frac{1}{24}$,$\frac{1}{{a}_{3}}$+$\frac{1}{{a}_{5}}$+$\frac{1}{{a}_{7}}$=9,Sn是數列{$\frac{1}{{a}_{n}}$}的前n項和,則S4=7.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.已知f(x)=x2,g(x)=$(\frac{1}{2})^x}$-m,若對?x1∈[-1,3],?x2∈[0,2],f(x1)≥g(x2),則m的取值范圍為( 。
A.$[{\frac{1}{2},+∞})$B.$[{\frac{1}{4},+∞})$C.$({-∞,\frac{1}{2}}]$D.$({-∞,\frac{1}{4}}]$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

17.已知sin($\frac{π}{3}$-α)+sinα=$\frac{1}{2}$,cosβ=$\frac{1}{3}$且α,β∈(0,π),
(1)求α的值;
(2)求cos(α+2β)的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

4.如圖,在四邊形ABCD中,△ABC是邊長為6的正三角形,設$\overrightarrow{BD}=x\overrightarrow{BA}+y\overrightarrow{BC}$(x,y∈R).
(1)若x=y=1,求|$\overrightarrow{BD}$|;
(2)若$\overrightarrow{BD}•\overrightarrow{BC}$=36,$\overrightarrow{BD}•\overrightarrow{BA}$=54,求x,y.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

7.設平面內有△ABC,且P表示這個平面內的動點,則屬于集合{P|PA=PB}∩{P|PA=PC}的點是(  )
A.△ABC的重心B.△ABC的內心C.△ABC的外心D.△ABC的垂心

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

14.在如圖所示的幾何體中,四邊形ABCD為平行四邊形,∠ABC=45°,AB=AC=AE=2EF,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC.
(1)若M是線段AD的中點,求證:GM∥平面ABFE;
(2)求二面角A-BF-C的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

11.在三棱錐S-ABC中,△ABC是邊長為4的正三角形,平面SAC⊥平面ABC,SA=SC=2$\sqrt{3}$,M為AB的中點.
(1)求證:AC⊥SB;
(2)求二面角S-CM-A的平面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

12.在四棱錐P-ABCD中,CD⊥平面PAD,AB∥CD,AD⊥PA,△ADC、△PAD均為等腰三角形,AD=4AB=4,M為線段CP上一點,且$\overrightarrow{PM}$=λ$\overrightarrow{PC}$(0≤λ≤1).
(1)若λ=$\frac{1}{4}$,求證:MB∥平面PAD;
(2)若λ=$\frac{1}{8}$,求二面角C-AB-M的余弦值.

查看答案和解析>>

同步練習冊答案