定義在R上的函數(shù)f(x)滿足:f(x)>1-f′(x),f(0)=0,f′(x)是f(x)的導(dǎo)函數(shù),則不等式exf(x)>ex-1(其中e為自然對(duì)數(shù)的底數(shù))的解集為( 。
A、(-∞,-1)∪(0,+∞)
B、(0,+∞)
C、(-∞,0)∪(1,+∞)
D、(-1,+∞)
考點(diǎn):導(dǎo)數(shù)的運(yùn)算
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:構(gòu)造函數(shù)g(x)=exf(x)-ex,(x∈R),研究g(x)的單調(diào)性,結(jié)合原函數(shù)的性質(zhì)和函數(shù)值,即可求解.
解答: 解:設(shè)g(x)=exf(x)-ex,(x∈R),
則g′(x)=exf(x)+exf′(x)-ex=ex[f(x)+f′(x)-1],
∵f′(x)>1-f(x),
∴f(x)+f′(x)-1>0,
∴g′(x)>0,
∴y=g(x)在定義域上單調(diào)遞增,
∵exf(x)>ex-1,
∴g(x)>-1,
又∵g(0)=e0f(0)-e0=-1,
∴g(x)>g(0),
∴x>0,
∴不等式的解集為(0,+∞)
故選:B.
點(diǎn)評(píng):本題考查函數(shù)單調(diào)性與奇偶性的結(jié)合,結(jié)合已知條件構(gòu)造函數(shù),然后用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=x2+3
1
0
f(x)
dx,則
1
0
f(x)dx
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由0,1,2,…,9這十個(gè)數(shù)字組成的無重復(fù)數(shù)字的四位數(shù)中,十位數(shù)字與千位數(shù)字之差的絕對(duì)值等于7的四位數(shù)的個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若指數(shù)函數(shù)f(x)=ax(a>0且a≠1)的圖象經(jīng)過點(diǎn)(4,16),則f(1)=(  )
A、4B、2C、1D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

要得到函數(shù)y=cos(2x-
π
3
)的圖象,只須將函數(shù)y=cos2x的圖象(  )
A、向右平移
π
6
B、向左平移
π
6
C、向右平移
π
3
D、向左平移
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l在x軸上的截距為1,且垂直于直線y=
1
2
x,則l的方程是( 。
A、y=-2x+2
B、y=-2x+1
C、y=2x+2
D、y=2x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某班有男生25名,女生20名,采用分層抽樣的方法從這45名學(xué)生中抽取一個(gè)容量為18的樣本,則應(yīng)抽取的女生人數(shù)為
 
名.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面內(nèi)A,B兩點(diǎn)的坐標(biāo)分別為(2,2),(0,-2),O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)P滿足|
BP
|=1
,則|
OA
+
OP
|
的最小值是( 。
A、3
B、1
C、
3
D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的重心為G,角A,B,C所對(duì)的邊分別為a,b,c,若2a
GA
+
3
b
GB
+3c
GC
=0,則sinA:sinB:sinC=( 。
A、1:1:1
B、
3
:1:2
C、
3
:2:1
D、3:2
3
:2

查看答案和解析>>

同步練習(xí)冊答案