精英家教網(wǎng)在四棱錐P-ABCD中,底面是邊長為2的菱形,∠DAB=60°,對角線AC與BD相交于點O,PO⊥平面ABCD,PB與平面ABCD所成的角為60°.
(1)求四棱錐P-ABCD的體積;
(2)若E是PB的中點,求異面直線DE與PA所成角的大小(結(jié)果用反三角函數(shù)值表示).
分析:(1)由PO⊥平面ABCD,得∠PBO是PB與平面ABCD所成的角,∠PBO=60°.由此我們可以計算出PO即棱錐的高,及底面菱形的面積,代入即可得到棱錐的體積.
(2)求異面直線DE與PA所成角的大小有兩種不同的思路:法一是以O(shè)為坐標(biāo)原點,射線OB、OC、OP分別為x軸、y軸、z軸的正半軸建立空間直角坐標(biāo)系.表示出空間中各個點的坐標(biāo),進(jìn)而給出相關(guān)向量的坐標(biāo),然后利用異面直線的夾角的余弦等于其方向向量夾角余弦值的絕對值,求出夾角.
法二是取AB的中點F,連接EF、DF.由E是PB的中點,得EF∥PA,則∠FED是異面直線DE與PA所成角(或它的補(bǔ)角),然后解三角形FED求出夾角.
解答:解:(1)在四棱錐P-ABCD中,由PO⊥平面ABCD,得
∠PBO是PB與平面ABCD所成的角,∠PBO=60°.
在Rt△AOB中BO=ABsin30°=1,由PO⊥BO,
于是,PO=BOtan60°=
3
,而底面菱形的面積為2
3

∴四棱錐P-ABCD的體積V=
1
3
×2
3
×
3
=2.
(2)解法一:以O(shè)為坐標(biāo)原點,射線OB、OC、
OP分別為x軸、y軸、z軸的正半軸建立空間直角坐標(biāo)系.
精英家教網(wǎng)
在Rt△AOB中OA=
3
,于是,點A、B、
D、P的坐標(biāo)分別是A(0,-
3
,0),
B(1,0,0),D(-1,0,0),P(0,0,
3
).
E是PB的中點,則E(
1
2
,0,
3
2
)于是
DE
=(
3
2
,0,
3
2
),
AP
=(0,
3
,
3
).
設(shè)
DE
AP
的夾角為θ,有cosθ=
3
2
9
4
+
3
4
3+3
=
2
4
,θ=arccos
2
4

∴異面直線DE與PA所成角的大小是arccos
2
4
;
解法二:取AB的中點F,連接EF、DF.
由E是PB的中點,得EF∥PA,
∴∠FED是異面直線DE與PA所成精英家教網(wǎng)
角(或它的補(bǔ)角),
在Rt△AOB中AO=ABcos30°=
3
=OP,
于是,在等腰Rt△POA中,
PA=
6
,則EF=
6
2

在正△ABD和正△PBD中,DE=DF=
3

cos∠FED=
1
2
EF
DE
=
6
4
3
=
2
4

∴異面直線DE與PA所成角的大小是arccos
2
4
點評:空間兩條直線夾角的余弦值等于他們方向向量夾角余弦值的絕對值;
空間直線與平面夾角的余弦值等于直線的方向向量與平面的法向量夾角的正弦值;
空間銳二面角的余弦值等于他的兩個半平面方向向量夾角余弦值的絕對值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面為直角梯形,AD∥BC,∠BAD=90,PA⊥底面ABCD,且PA=AD=AB=2BC=2,M,N分別為PC、PB的中點.
(1)求證:PB⊥DM;
(2)求BD與平面ADMN所成角的大;
(3)求二面角B-PC-D的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4.AB=2,AN⊥PC于點N,M是PD中點.
(1)用空間向量證明:AM⊥MC,平面ABM⊥平面PCD.
(2)求直線CD與平面ACM所成的角的正弦值.
(3)求點N到平面ACM的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是矩形,O為底面中心,PA⊥平面ABCD,PA=AD=2AB.M是PD的中點
(1)求證:直線MO∥平面PAB;
(2)求證:平面PCD⊥平面ABM.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是矩形,已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)求證:AD⊥平面PAB;
(2)求二面角A-PB-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•成都模擬)如圖,在四棱錐P-ABCD中,底面ABCD為正方形,且PD⊥平面ABCD,PD=AB=1,EF分別是PB、AD的中點,
(I)證明:EF∥平面PCD;
(Ⅱ)求二面角B-CE-F的大。

查看答案和解析>>

同步練習(xí)冊答案