【題目】拋物線y2=2px(p>0)的焦點(diǎn)為F,準(zhǔn)線為L(zhǎng),A、B是拋物線上的兩個(gè)動(dòng)點(diǎn),且滿足∠AFB= .設(shè)線段AB的中點(diǎn)M在L上的投影為N,則 的最大值是( 。
A.
B.1
C.
D.

【答案】B
【解析】解:設(shè)|AF|=a,|BF|=b,連接AF、BF,

由拋物線定義,得|AF|=|AQ|,|BF|=|BP|,

在梯形ABPQ中,2|MN|=|AQ|+|BP|=a+b.

由余弦定理得,

|AB|2=a2+b2﹣2abcos60°=a2+b2﹣ab,

配方得,|AB|2=(a+b)2﹣3ab,

又∵ab≤( 2,

∴(a+b)2﹣3ab≥(a+b)2 (a+b)2= (a+b)2

得到|AB|≥ (a+b).

≤1,

的最大值為1.

所以答案是:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=(x2﹣ax+a)e﹣x , a∈R.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)g(x)=f'(x),其中f'(x)為函數(shù)f(x)的導(dǎo)函數(shù).判斷g(x)在定義域內(nèi)是否為單調(diào)函數(shù),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 的兩個(gè)零點(diǎn) 滿足 ,集合 ,則( )
A.mA , 都有f(m+3)>0
B.mA , 都有f(m+3)<0
C.m0A , 使得f(m0+3)=0
D.m0A , 使得f(m0+3)<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線C的極坐標(biāo)方程是ρ=2,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為 (t為參數(shù)).
(Ⅰ)寫出直線l的普通方程與曲線C的直角坐標(biāo)方程;
(Ⅱ)設(shè)曲線C經(jīng)過(guò)伸縮變換 得到曲線C',若點(diǎn)P(1,0),直線l與C'交與A,B,求|PA||PB|,|PA|+|PB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓 + =1(a>b>0)的離心率為 ,C為橢圓上位于第一象限內(nèi)的一點(diǎn).

(1)若點(diǎn)C的坐標(biāo)為(2, ),求a,b的值;
(2)設(shè)A為橢圓的左頂點(diǎn),B為橢圓上一點(diǎn),且 = ,求直線AB的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,左頂點(diǎn)為A,左焦點(diǎn)為F1(﹣2,0),點(diǎn)B(2, )在橢圓C上,直線y=kx(k≠0)與橢圓C交于E,F(xiàn)兩點(diǎn),直線AE,AF分別與y軸交于點(diǎn)M,N
(Ⅰ)求橢圓C的方程;
(Ⅱ)在x軸上是否存在點(diǎn)P,使得無(wú)論非零實(shí)數(shù)k怎樣變化,總有∠MPN為直角?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù) ,a為常數(shù),且f(3)=
(1)求a值;
(2)求使f(x)≥4的x值的取值范圍;
(3)設(shè)g(x)=﹣ x+m,對(duì)于區(qū)間[3,4]上每一個(gè)x值,不等式f(x)>g(x)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量 =(cos ,﹣1) =( ),設(shè)函數(shù)f(x)= +1.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若關(guān)于x的方程f(x)=a在區(qū)間[0,π]上有實(shí)數(shù)解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐A﹣BOC中,OA,OB,OC兩兩垂直,點(diǎn)D,E分別為棱BC,AC的中點(diǎn),F(xiàn)在棱AO上,且滿足OF= ,已知OA=OC=4,OB=2.

(1)求異面直線AD與OC所成角的余弦值;
(2)求二面角C﹣EF﹣D的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案