已知橢圓的左焦點F為圓的圓心,且橢圓上的點到點F的距離最小值為。
(I)求橢圓方程;
(II)已知經(jīng)過點F的動直線與橢圓交于不同的兩點A、B,點M(),證明:為定值。
(I)(II)當(dāng)直線與軸垂直時,的方程為
,當(dāng)直線與軸不垂直時,設(shè)直線的方程為,由得,,,所以,為定值,且定值為
【解析】
試題分析:(1)因為圓的圓心為,半徑,所以橢圓的半焦距
又橢圓上的點到點F的距離最小值為,所以,即
所以,所求橢圓的方程為 2分
(2)①當(dāng)直線與軸垂直時,的方程為,可求得
此時, 4分
②當(dāng)直線與軸不垂直時,設(shè)直線的方程為
由得 6分
設(shè),則 7分
因為
所以,為定值,且定值為 13分
考點:橢圓方程性質(zhì)及直線與橢圓的位置關(guān)系
點評:本題第二問中直線與橢圓相交時需注意討論直線斜率存在與不存在兩種情況,當(dāng)斜率存在時常聯(lián)立方程組,利用根與系數(shù)的關(guān)系求解化簡
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省濰坊市高三(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省淄博市高三(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年廣東省深圳市高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com