在△ABC中,D,E,F(xiàn)分別是BC,CA,AB的中點(diǎn),點(diǎn)M是△ABC的重心,則等于( )

A. B.4 C.4 D.4

 

D

【解析】

試題分析:如圖,根據(jù)三角形重心的性質(zhì),有

,選D

考點(diǎn):三角形性質(zhì),平面向量運(yùn)算

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在銳角三角形ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,若A=2B,給出下列命題:
π
6
<B<
π
4

a
b
∈(
2
,
3
];
③a2=b2+bc.
其中正確的個(gè)數(shù)是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C1的極坐標(biāo)方程為ρ2-4ρcosθ+2=0,曲線C2的參數(shù)方程為
x=t
y=
t
 (t為參數(shù),)C1與C2的交點(diǎn)的直角坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆四川省成都市新都區(qū)高三診斷測(cè)試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題

函數(shù)f(x)=10x+x-7與g(x)=lgx+x-7的零點(diǎn)分別為1和x2,則x1+x2=_______

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆四川省成都市新都區(qū)高三診斷測(cè)試文科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,多邊形ABCDE中,∠ABC=90°,AD∥BC,△ADE是正三角形,AD=2,AB=BC=1,沿直線AD將△ADE折起至△ADP的位置,連接PB,BC,構(gòu)成四棱錐P-ABCD,使得∠PAB=90°.點(diǎn)O為線段AD的中點(diǎn),連接PO.

(1)求證:PO⊥平面ABCD;

(2)求異面直線CD與PA所成角的余弦值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆四川省成都市新都區(qū)高三診斷測(cè)試文科數(shù)學(xué)試卷(解析版) 題型:填空題

函數(shù)f(x)=lg|2x+1|的對(duì)稱(chēng)軸為_(kāi)___________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆四川省成都市新都區(qū)高三診斷測(cè)試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知全集U=R,集合A={x|x2-2x<0},B={x|x-1≥0},那么集合A∩?UB=( )

A.{x|0<x<1} B.{x|x<0} C.{x|x>2} D.{x|1<x<2}

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆四川省成都市高三10月考理科數(shù)學(xué)試卷(解析版) 題型:填空題

表示值域?yàn)镽的函數(shù)組成的集合,表示具有如下性質(zhì)的函數(shù)組成的集合:對(duì)于函數(shù),存在一個(gè)正數(shù),使得函數(shù)的值域包含于區(qū)間.例如,當(dāng),時(shí),,.現(xiàn)有如下命題:

①設(shè)函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/GZSX/web/STSource/2015020506050678134586/SYS201502050605096876737296_ST/SYS201502050605096876737296_ST.011.png">,則“”的充要條件是“,,”;

②函數(shù)的充要條件是有最大值和最小值;

③若函數(shù),的定義域相同,且,則;

④若函數(shù),)有最大值,則.

其中的真命題有 .(寫(xiě)出所有真命題的序號(hào))

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆四川省成都市高三10月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知{an}是等差數(shù)列,其前n項(xiàng)的和為Sn, {bn}是等比數(shù)列,且a1=b1=2,a4+b4=21,S4+b4=30.(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;

(2)記cn=anbn,n∈N*,求數(shù)列{cn}的前n項(xiàng)和.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案