設(shè)
f(x)=ax2-2ax+lnx,已知函數(shù)f(x)有兩個(gè)極值點(diǎn)x1,x2,且x1x2>.(1)求a的取值范圍;
(2)若存在x0∈[1+,2],使不等式f(x0)+ln(a+1)>m(a2-1)-(a+1)+2ln2對(duì)任意的a(取值范圍內(nèi)的值)恒成立,求實(shí)數(shù)m的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:志鴻系列訓(xùn)練必修一數(shù)學(xué)北師版 題型:013
設(shè)f(x)=ax2+bx+c(a≠0),若f(α)·f(β)<0(α<β),則f(x)=0在(α,β)內(nèi)的實(shí)根的個(gè)數(shù)為
A.0
B.1
C.2
D.無法確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:高中數(shù)學(xué)全解題庫(國(guó)標(biāo)蘇教版·必修4、必修5) 蘇教版 題型:044
設(shè)f(x)=ax2+bx,且1≤f(-1)≤2,2≤f(1)≤4,求f(-2)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:設(shè)計(jì)必修五數(shù)學(xué)蘇教版 蘇教版 題型:044
設(shè)f(x)=ax2+bx+c,若,問是否存在a、b、c∈R,使得不等式x2+≤f(x)≤2x2+2x+對(duì)一切實(shí)數(shù)x都成立?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com