已知點A(3,0),B(-
3
,1),C(cosa,sina),O(0,0),若|
OA
+
OC
|=
13
,a∈(0,π),則
OB
OC
的夾角為(  )
A、
π
6
B、
4
C、
π
3
D、
π
2
分析:由已知,求出C的坐標,得出
oc
的坐標,再利用夾角公式求解.
解答:解:∵
OA
+
OB
=(3+cosα,sinα)∴
|OA
+
OC
|
=
(3+cosα)2+ sin2 α
=
10+6cosα
∴cosα=
1
2
,
∵α∈(0,π),∴α=
π
3
,sinα=
3
2
OC
=(
1
2
3
2
),∴
OB
 •
OC
=0,夾角為直角.
故選D.
點評:本題考查向量數(shù)量積、模、夾角的計算,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點A(-3,0),B(3,0),動點P到A的距離與到B的距離之比為2.
(1)求P點的軌跡E的方程;
(2)當m為何值時,直線l:mx+(2m-1)y-5m+1=0被曲線E截得的弦最短.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•嘉興二模)已知點A(-3,0)和圓O:x2+y2=9,AB是圓O的直徑,M和N是AB的三等分點,P(異于A,B)是圓O上的動點,PD⊥AB于D,
PE
ED
(λ>0)
,直線PA與BE交于C,則當λ=
1
8
1
8
時,|CM|+|CN|為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點A(-3,0,-4),點A關(guān)于原點的對稱點為B,則|AB|等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知點A(
3
,0),B(0,1),圓C是以AB為直徑的圓,直線l:
x=tcosφ
y=-1+tsinφ
,(t為參數(shù)).
(1)以坐標原點為極點,x軸正半軸為極軸,建立極坐標系,求圓C的極坐標方程;
(2)過原點O作直線l的垂線,垂足為H,若動點M0滿足2
OM
=3
OH
,當φ變化時,求點M軌跡的參數(shù)方程,并指出它是什么曲線.

查看答案和解析>>

同步練習(xí)冊答案