(2008•閘北區(qū)二模)若
lim
n→∞
an2+bn
n+1
=2
,則a+b=
2
2
分析:由若
lim
n→∞
an2+bn
n+1
=2
,知
a=0
b=2
,由此能求出a+b.
解答:解:∵若
lim
n→∞
an2+bn
n+1
=2
,
a=0
b=2

∴a+b=2.
故答案為:2.
點評:本題考查極限的性質(zhì)和運(yùn)算,解題時要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2008•閘北區(qū)二模)已知邊長為1的正三角形ABC中,則
BC
CA
+
CA
AB
+
AB
BC
的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•閘北區(qū)二模)某農(nóng)貿(mào)公司按每擔(dān)200元收購某農(nóng)產(chǎn)品,并按每100元納稅10元(又稱征稅率為10個百分點),計劃可收購a萬擔(dān).政府為了鼓勵收購公司多收購這種農(nóng)產(chǎn)品,決定征稅率降低x(x≠0)個百分點,預(yù)測收購量可增加2x個百分點.
(Ⅰ)寫出稅收y(萬元)與x的函數(shù)關(guān)系式;
(Ⅱ)要使此項稅收在稅率調(diào)節(jié)后,不少于原計劃稅收的83.2%,試確定x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•閘北區(qū)二模)已知關(guān)于x,y的方程組
y=
-x2-2x
x+y-m=0
有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•閘北區(qū)二模)如圖,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
,A1、A2為橢圓C的左、右頂點.
(Ⅰ)設(shè)F1為橢圓C的左焦點,證明:當(dāng)且僅當(dāng)橢圓C上的點P在橢圓的左、右頂點時|PF1|取得最小值與最大值;
(Ⅱ)若橢圓C上的點到焦點距離的最大值為3,最小值為1.求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅲ)若直線l:y=kx+m與(Ⅱ)中所述橢圓C相交于A,B兩點(A,B不是左右頂點),且滿足AA2⊥BA2,求證:直線l過定點,并求出該定點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案