9.高二數(shù)學(xué)ICTS競賽初賽考試后,某校對95分以上的成績進(jìn)行統(tǒng)計,其頻率分布直方圖如圖所示,其中[135,145]分?jǐn)?shù)段的人數(shù)為2人.
(1)求這組數(shù)據(jù)的平均數(shù)M;
(2)現(xiàn)根據(jù)初賽成績從第一組和第五組(從低分段到高分段依次為第一組、第二組、…、第五組)中任意選出兩人,形成幫扶學(xué)習(xí)小組.若選出的兩人成績之差大于20分,則稱這兩人為“黃金搭檔組”,試求選出的兩人為“黃金搭檔組”的概率.

分析 (1)由頻率分布直方圖能求出這組數(shù)據(jù)的平均數(shù).
(2)先求出總?cè)藬?shù)為40,第一組人數(shù)為4人,第五組有2人,設(shè)第一組4人分別為a,b,c,d,第五組2人為A,B,利用列舉法能求出選出的兩人為“黃金搭檔組”的概率.

解答 解:(1)由頻率分布直方圖知:
這組數(shù)據(jù)的平均數(shù)M=100×0.1+110×0.25+120×0.45+130×0.15+140×0.05=118.…(4分)
(2)總?cè)藬?shù)為$\frac{2}{0.005*10}=40$;…(5分)
第一組人數(shù)為:0.01×10×40=4人,第五組有2人,
事件S:選出的兩人為“黃金搭擋”,
設(shè)第一組4人分別為a,b,c,d,第五組2人為A,B,
從6人中抽2人,有如下基本事件:
(a,b),(a,c),(a,d),(a,A),(a,B),(b,c),(b,d),(b,A),(b,B),
(c,d),(c,A),(c,B),(d,A),(d,B),(A,B),
共15個基本事件.…(9分)
事件S含有基本事件:
(a,A),(a,B),(b,A),(b,B),(c,A),
(c,B),(d,A),(d,B)共8個基本事件.…(10分)
∴選出的兩人為“黃金搭檔組”的概率P(S)=$\frac{8}{15}$.…(12分)

點評 本題考查頻率分布直方圖的應(yīng)用,考查概率的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,考查運用統(tǒng)計知識解決簡單實際問題的能力,數(shù)據(jù)處理能力和運用意識.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在平面內(nèi)的動點(x,y)滿足不等式$\left\{\begin{array}{l}{x+y-3≤0}\\{x-y+1≥0}\end{array}\right.$,則z=2x+y的取值范圍是( 。
A.(-∞,+∞)B.(-∞,4]C.[4,+∞)D.[-2,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,四棱錐P-ABCD中,平面PAD⊥平面ABCD,△PAD是正三角形,底面ABCD是直角梯形,AB∥CD,CD⊥AD,CD=2AB=2AD=2,M為PC的中點.
(Ⅰ)求證:BM∥平面PAD;
(Ⅱ)求證:直線BM⊥平面PDC;
(Ⅲ)求直線PD與平面BDM所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,矩形ABCD中,$AB=2\sqrt{2}$,$AD=\sqrt{2}$,M為DC的中點,將△DAM沿AM折到△D′AM的位置,AD′⊥BM.
(1)求證:平面D′AM⊥平面ABCM;
(2)若E為D′B的中點,求三棱錐A-D′EM的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某校從高二年級學(xué)生中隨機抽取50名學(xué)生,將他們的期中考試數(shù)學(xué)成績(滿分100分,成績均為不低于40分的整數(shù))分成六段:[40,50),[50,60),…,[90,100],得到如圖所示的頻率分布直方圖.
(1)若該校高二年級共有學(xué)生1000人,試估計成績不低于60分的人數(shù);
(2)求該校高二年級全體學(xué)生期中考試成績的眾數(shù)、中位數(shù)和平均數(shù)的估計值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列函數(shù)在區(qū)間[0,+∞)上是增函數(shù)的是( 。
①y=2x ②y=x2+2x-1、踶=|x+2|④y=|x|+2.
A.①②B.①③C.②③④D.①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知數(shù)列{an}的前n項和Sn=$\frac{{n}^{2}+3n}{4}$,n∈N*
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=(n+1)4${\;}^{{a}_{n}}$-$\frac{1}{4{a}_{n}{a}_{n+1}}$,求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.極坐標(biāo)系與直角坐標(biāo)系xOy有相同的長度單位,以原點為極點,以x軸正半軸為極軸,曲線C1的極坐標(biāo)方程為ρ=4sinθ,曲線C2的參數(shù)方程為$\left\{{\begin{array}{l}{x=m+tcosα}\\{y=tsinα}\end{array}}\right.$(t為參數(shù),0≤α<π),射線$θ=φ,θ=φ+\frac{π}{4},θ=φ-\frac{π}{4}$與曲線C1交于(不包括極點O)三點A,B,C.
(1)求證:$|{OB}|+|{OC}|=\sqrt{2}|{OA}|$;
(2)當(dāng)$φ=\frac{5π}{12}$時,B,C兩點在曲線C2上,求m與α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知二次函數(shù)f(x)=ax2-4bx+2.
(Ⅰ)任取a∈{1,2,3},b∈{-1,1,2,3,4},記“f(x)在區(qū)間[1,+∞)上是增函數(shù)”為事件A,求A發(fā)生的概率;
(Ⅱ)任。╝,b)∈{(a,b)|a+4b-6≤0,a>0,b>0},記“關(guān)于x的方程f(x)=0有一個大于1的根和一個小于1的根”為事件B,求B發(fā)生的概率.

查看答案和解析>>

同步練習(xí)冊答案