△ABC中,已知AB=3,AC=2,且
AB
AC
=
AC
2
,則BC=
5
5
分析:根據(jù)已知結(jié)合向量的數(shù)量積公式,求出cosA,代入余弦定理公式,可得BC
解答:解:∵AB=3,AC=2,
AB
AC
=
AC
2
,
|
AB
|•|
AC
|cosA=|
AC
|
2

∴cosA=
2
3

∴BC=
AB2+AC2-2AB•AC•cosA
=
5

故答案為:
5
點(diǎn)評:本題考查的知識點(diǎn)是向量在幾何中的應(yīng)用,平面向量數(shù)量積的運(yùn)算,其中求出cosA是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知(
AB
+
AC
)•
BC
=0

(1)求證:|
AB
|=|
AC
|;
(2)若|
AB
|=2,
AB
AC
=-2
,求|
BC
|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知AB=2,BC=1,CA=
3
,分別在邊AB、BC、CA上取點(diǎn)D、E、F,使△DEF是等邊三角形(如圖).設(shè)∠FEC=α,問sinα為何值時,△DEF的邊長最。坎⑶蟪鲎钚≈担

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知AB、BC、CA的長分別為c、a、b,利用向量方法證明:b2=a2+c2-2accosB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在周長為定值的△ABC中,已知|AB|=2
3
,動點(diǎn)C的運(yùn)動軌跡為曲線G,且當(dāng)動點(diǎn)C運(yùn)動時,cosC有最小值-
1
2

(1)以AB所在直線為x軸,線段AB的中垂線為y軸建立直角坐標(biāo)系,求曲線G的方程.
(2)過點(diǎn)(m,0)作圓x2+y2=1的切線l交曲線G于M,N兩點(diǎn).將線段MN的長|MN|表示為m的函數(shù)
 
,并求|MN|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知AB=3,A=120°,且△ABC的面積為
15
3
4
,則BC邊長為
 

查看答案和解析>>

同步練習(xí)冊答案