數(shù)列{an}的前n項(xiàng)和為Sn,若a1=2且Sn=Sn-1+2n(n≥2,n∈N*).
(Ⅰ)求Sn;
(Ⅱ)是否存在等比數(shù)列{bn}滿足b1=a1,b2=a3,b3=a9?若存在,則求出數(shù)列{bn}的通項(xiàng)公式;若不存在,則說明理由.
分析:(I)因?yàn)镾n=Sn-1+2n,所以Sn-Sn-1=2n對n≥2,n∈N*成立.由此能求出{an}是等差數(shù)列,從而能夠得到Sn=
a1+an
2
•n=n2+n
,n∈N*
(II)存在.由an=2n,n∈N*對成立,知a3=6,a9=18,又a1=2,故由b1=a1,b2=a3,b3=a9,得存在以b1=2為首項(xiàng),公比為3的等比數(shù)列{bn},其通項(xiàng)公式為bn=2•3n-1
解答:解:(I)因?yàn)镾n=Sn-1+2n,
所以有Sn-Sn-1=2n對n≥2,n∈N*成立(2分)
即an=2n對n≥2成立,又a1=S1=2•1,
所以an=2n對n∈N*成立(3分)
所以an+1-an=2對n∈N*成立,所以{an}是等差數(shù)列,(4分)
所以有Sn=
a1+an
2
•n=n2+n
,n∈N*(6分)
(II)存在.(7分)
由(I),an=2n,n∈N*對成立
所以有a3=6,a9=18,又a1=2,(9分)
所以由b1=a1,b2=a3,b3=a9,則
b2
b1
=
b3
b2
=3
(11分)
所以存在以b1=2為首項(xiàng),公比為3的等比數(shù)列{bn},
其通項(xiàng)公式為bn=2•3n-1.(13分)
點(diǎn)評:本題考查等差數(shù)列的證明及其前n項(xiàng)和的求法,考查等比數(shù)列前n項(xiàng)和公式的求法和應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意公式的靈活運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等比數(shù)列{an}的公比q≠1,Sn表示數(shù)列{an}的前n項(xiàng)的和,Tn表示數(shù)列{an}的前n項(xiàng)的乘積,Tn(k)表示{an}的前n項(xiàng)中除去第k項(xiàng)后剩余的n-1項(xiàng)的乘積,即Tn(k)=
Tn
ak
(n,k∈N+,k≤n),則數(shù)列
SnTn
Tn(1)+Tn(2)+…+Tn(n)
的前n項(xiàng)的和是
a12
2-q-q-1
(n+nq-
q-qn+1+1-q1-n
1-q
a12
2-q-q-1
(n+nq-
q-qn+1+1-q1-n
1-q
(用a1和q表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}的通項(xiàng)an=
1
pn-q
,實(shí)數(shù)p,q滿足p>q>0且p>1,sn為數(shù)列{an}的前n項(xiàng)和.
(1)求證:當(dāng)n≥2時(shí),pan<an-1;
(2)求證sn
p
(p-1)(p-q)
(1-
1
pn
)

(3)若an=
1
(2n-1)(2n+1-1)
,求證sn
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知Sn是數(shù)列{an}的前n項(xiàng)和,an>0,Sn=
a
2
n
+an
2
,n∈N*,
(1)求證:{an}是等差數(shù)列;
(2)若數(shù)列{bn}滿足b1=2,bn+1=2an+bn,求數(shù)列{bn}的通項(xiàng)公式bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•商丘二模)數(shù)列{an}的前n項(xiàng)和為Sn,若數(shù)列{an}的各項(xiàng)按如下規(guī)律排列:
1
2
1
3
,
2
3
,
1
4
,
2
4
3
4
,
1
5
,
2
5
,
3
5
4
5
…,
1
n
,
2
n
,…,
n-1
n
,…有如下運(yùn)算和結(jié)論:
①a24=
3
8

②數(shù)列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…是等比數(shù)列;
③數(shù)列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…的前n項(xiàng)和為Tn=
n2+n
4
;
④若存在正整數(shù)k,使Sk<10,Sk+1≥10,則ak=
5
7

其中正確的結(jié)論是
①③④
①③④
.(將你認(rèn)為正確的結(jié)論序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①若數(shù)列{an}的前n項(xiàng)和Sn=2n+1,則數(shù)列{an}為等比數(shù)列;
②在△ABC中,如果A=60°,a=
6
,b=4
,那么滿足條件的△ABC有兩解;
③設(shè)函數(shù)f(x)=x|x-a|+b,則函數(shù)f(x)為奇函數(shù)的充要條件是a2+b2=0;
④設(shè)直線系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),則M中的直線所能圍成的正三角形面積都相等.
其中真命題的序號是

查看答案和解析>>

同步練習(xí)冊答案