【題目】某工廠在政府的幫扶下,準備轉(zhuǎn)型生產(chǎn)一種特殊機器,生產(chǎn)需要投入固定成本萬元,生產(chǎn)與銷售均已百臺計數(shù),且每生產(chǎn)臺,還需增加可變成本萬元,若市場對該產(chǎn)品的年需求量為臺,每生產(chǎn)百臺的實際銷售收入近似滿足函數(shù).
()試寫出第一年的銷售利潤(萬元)關(guān)于年產(chǎn)量(單位:百臺,,)的函數(shù)關(guān)系式:(說明:銷售利潤=實際銷售收入-成本)
()因技術(shù)等原因,第一年的年生產(chǎn)量不能超過臺,若第一年的年支出費用(萬元)與年產(chǎn)量(百臺)的關(guān)系滿足,問年產(chǎn)量為多少百臺時,工廠所得純利潤最大?
科目:高中數(shù)學 來源: 題型:
【題目】我國是世界上嚴重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調(diào)整居民生活用水收費方案,擬確定一個合理的月用水量標準(噸)、一位居民的月用水量不超過的部分按平價收費,超出的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖.
(1)設(shè)該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),并說明理由;
(2)若該市政府希望使85%的居民每月的用水量不超過標準(噸),估計的值,并說明理由.
(3)利用分層抽樣的方法在[0,0.5) [3.5,4) [4,4.5)三組中選取5位居民,再從這5位居民中任意取三人,求這三人恰有兩人來自同一組的概率。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列四個命題:
①“若為的極值點,則”的逆命題為真命題;
②“平面向量的夾角是鈍角”的充分不必要條件是
③若命題,則
④函數(shù)在點處的切線方程為.
其中不正確的個數(shù)是
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的首項為,前項和為與之間滿足 ,
(Ⅰ)求證:數(shù)列是等差數(shù)列;
(Ⅱ)求數(shù)列的通項公式;
(Ⅲ)設(shè)存在正整數(shù),使對一切都成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下的資料:
該興趣小組確定的研究方案是:現(xiàn)從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選用的2組數(shù)據(jù)進行檢驗.
(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個月的概率;
(2)若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2至5月的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(3)若有線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問(2)中所得線性回歸方程是否是理想?
參考公式:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,命題橢圓C1: 表示的是焦點在軸上的橢圓,命題對,直線與橢圓C2: 恒有公共點.
(1)若命題“”是假命題,命題“”是真命題,求實數(shù)的取值范圍.
(2)若真假時,求橢圓C1、橢圓C2的上焦點之間的距離d的范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若定義在上的函數(shù),其圖象是連續(xù)不斷的,且存在常數(shù)使得對任意的實數(shù)都成立,則稱是一個“特征函數(shù)”則下列結(jié)論中正確的個數(shù)為( ).
①是常數(shù)函數(shù)中唯一的“特征函數(shù)”;
②不是“特征函數(shù)”;
③“特征函數(shù)”至少有一個零點;
④是一個“特征函數(shù)”;.
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求的單調(diào)區(qū)間;
(2)若對,都有成立,求的取值范圍;
(3)當時,求在上的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com