若實(shí)數(shù)a,b,c成等差數(shù)列,點(diǎn)P(-1,0)在動(dòng)直線(xiàn)ax+by+c=0上的射影為M,點(diǎn)N(3,3),則|MN|的最大值是( 。
A、5+
2
B、5-
2
C、5+2
2
D、5-2
2
考點(diǎn):等差數(shù)列的性質(zhì)
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:由a,b,c成等差數(shù)列得到a-2b+c=0,說(shuō)明動(dòng)直線(xiàn)ax+by+c=0恒過(guò)定點(diǎn)Q(1,-2),再由點(diǎn)P(-1,0)在動(dòng)直線(xiàn)ax+by+c=0上的射影為M,可知M在以PQ為直徑的圓上,求出圓的圓心坐標(biāo)和圓的半徑,再由兩點(diǎn)間的距離公式求出圓心到N點(diǎn)的距離,則|MN|的最大值為圓心到N點(diǎn)的距離加半徑.
解答:解:∵a,b,c成等差數(shù)列,
∴2b=a+c,即a-2b+c=0,
可得方程ax+by+c=0恒過(guò)Q(1,-2),

又點(diǎn)P(-1,0)在動(dòng)直線(xiàn)ax+by+c=0上的射影為M,
∴∠PMQ=90°,
∴M在以PQ為直徑的圓上,
∴由中點(diǎn)坐標(biāo)公式求得圓的圓心C坐標(biāo)為(0,-1),
半徑r=
1
2
|PQ|=
1
2
(1+1)2+(-2-0)2
=
2
,
又N(3,3),
∴|CN|=
(3-0)2+(3+1)2
=5
,
則|MN|的最大值是5+
2

故選:A.
點(diǎn)評(píng):本題考查了等差數(shù)列的性質(zhì),訓(xùn)練了直線(xiàn)系方程的應(yīng)用,體現(xiàn)了數(shù)形結(jié)合的解題思想方法,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

利用二次函數(shù)的圖象求一元二次方程-2x2+4x+1=0的近似根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x2+y2+2x+3y=0和圓x2+y2-4x+2y+1=0,則過(guò)兩個(gè)圓交點(diǎn)的直線(xiàn)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知扇形的半徑與弧長(zhǎng)相等,且周長(zhǎng)和面積的比值為2,則扇形的半徑為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知扇形的半徑為2,面積為3,則這個(gè)扇形的中心角的弧度數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,S6≥21且S15≤120,則a10的最大值是( 。
A、12
B、10
C、8
D、
7
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等差數(shù)列{an}中an>0,且a1+a2+…+a10=30,則a5•a6的最大值等于( 。
A、3B、6C、9D、36

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題P:?x∈R,使得
x+2
x
<0,則命題?P是( 。
A、?x∈R,都有
x+2
x
≥0
B、?x∈R,使得
x+2
x
≥0
C、?x∈R,都有
x+2
x
≥0或x=0
D、?x∈R,都有
x+2
x
≥0或x=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆遼寧省大連市高三上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿(mǎn)分12分)

平面內(nèi)動(dòng)點(diǎn)P(x,y)與兩定點(diǎn)A(-2, 0), B(2,0)連線(xiàn)的斜率之積等于,若點(diǎn)P的軌跡為曲線(xiàn)E,過(guò)點(diǎn)Q作斜率不為零的直線(xiàn)交曲線(xiàn)E于點(diǎn)

(1)求曲線(xiàn)E的方程;

(2)求證:;

(3)求面積的最大值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案