設△ABC的內角A,B,C所對的邊分別為a,b,c且acosC-
12
c
=b.
(1)求角A的大小;
(2)若a=1,求△ABC的周長的取值范圍.
分析:(1)根據(jù)正弦定理化簡題中等式,得sinAcosC-
1
2
sinC=sinB.由三角形的內角和定理與誘導公式,可得sinB=sin(A+C)=sinAcosC+cosAsinC,代入前面的等式解出cosA=-
1
2
,結合A∈(0,π)可得角A的大;
(2)根據(jù)A=
3
且a=1利用正弦定理,算出b=
2
3
3
sinB且c=
2
3
3
sinC,結合C=
π
3
-B代入△ABC的周長表達式,利用三角恒等變換化簡得到△ABC的周長關于角B的三角函數(shù)表達式,再根據(jù)正弦函數(shù)的圖象與性質加以計算,可得△ABC的周長的取值范圍.
解答:解:(Ⅰ)∵acosC-
1
2
c
=b,
∴根據(jù)正弦定理,得sinAcosC-
1
2
sinC=sinB.
又∵△ABC中,sinB=sin(π-B)=sin(A+C)=sinAcosC+cosAsinC,
∴sinAcosC-
1
2
sinC=sinAcosC+cosAsinC,
化簡得-
1
2
sinC=cosAsinC,結合sinC>0可得cosA=-
1
2

∵A∈(0,π),∴A=
3
;
(Ⅱ)∵A=
3
,a=1,
∴根據(jù)正弦定理
a
sinA
=
b
sinB
,可得b=
asinB
sinA
=
sinB
sin
3
=
2
3
3
sinB,同理可得c=
2
3
3
sinC,
因此,△ABC的周長l=a+b+c=1+
2
3
3
sinB+
2
3
3
sinC
=1+
2
3
3
[sinB+sin(
π
3
-B)]=1+
2
3
3
[sinB+(
3
2
cosB-
1
2
sinB)]
=1+
2
3
3
1
2
sinB+
3
2
cosB)=1+
2
3
3
sin(B+
π
3
).
∵B∈(0,
π
3
),得B+
π
3
∈(
π
3
,
3

∴sin(B+
π
3
)∈(
3
2
,1],可得l=a+b+c=1+
2
3
3
sin(B+
π
3
)∈(2,1+
2
3
3
]
即△ABC的周長的取值范圍為(2,1+
2
3
3
].
點評:本題已知三角形的邊角關系式,求角A的大小,并在邊a=1的情況下求三角形的周長的取值范圍.著重考查了正弦定理、三角函數(shù)的圖象與性質、三角恒等變換和函數(shù)的值域與最值等知識,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f(x)=
3
2
sin2x-cos2-
1
2
,(x∈R).
(Ⅰ)求函數(shù)f(x)的最小值和最小正周期;
(Ⅱ)設△ABC的內角A、B、C的對邊分別為a、b、c,且c=
3
,f(C)=0,若
m
=(1,sinA)與
n
=(2,sinB)共線,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設△ABC的內角A、B、C的對邊分別為a、b、c.若b=
3
,c=1,B=60°
,則角C=
 
°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設△ABC的內角A,B,C的對邊分別為a,b,c
(1)求證:acosB+bcosA=c;
(2)若acosB-bcosA=
3
5
c,試求
tanA
tanB
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
2
sin2x-cos2x-
1
2
,x∈R.
(Ⅰ)若x∈[
5
24
π,
3
4
π]
,求函數(shù)f(x)的最大值和最小值,并寫出相應的x的值;
(Ⅱ)設△ABC的內角A、B、C的對邊分別為a、b、c,滿足c=
3
,f(C)=0,且sinB=2sinA,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設△ABC的內角A、B、C所對的邊分別為a,b,c,
(1)若a=1,b=2,cosC=
1
4
,求△ABC的周長;
(2)若直線l:
x
a
+
y
b
=1
恒過點D(1,4),求u=a+b的最小值.

查看答案和解析>>

同步練習冊答案