函數(shù)f(x)=x3+3x2+3x的單調增區(qū)間為(  )
A、(-∞,+∞)
B、(-∞,-1)
C、(0,+∞)
D、(-1,+∞)
考點:利用導數(shù)研究函數(shù)的單調性
專題:導數(shù)的概念及應用
分析:由f′(x)=3x2+6x+3=3(x+1)2≥0,得f(x)在(-∞,+∞)遞增.
解答: 解:∵f′(x)=3x2+6x+3=3(x+1)2≥0,
∴f(x)在(-∞,+∞)上遞增,
故選:A.
點評:本題考察了函數(shù)的單調性,導數(shù)的應用,是一道基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在等差數(shù)列{an}中,已知a3=5,a1+a2+…+a7=49
(Ⅰ)求an
(Ⅱ)若bn=
1
anan+1
(n∈N*),求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=x3-ax2+4在區(qū)間[0,2]內單調遞減,則( 。
A、a≥3B、a=3
C、a≤3D、0<a<3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若方程x3-x+1=0在區(qū)間(a,b)(a,b,∈Z,且b-a=1)上有一根,則a+b的值為( 。
A、-1B、-2C、-3D、-4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知四棱錐P-ABCD的側棱長與底面邊長都相等,點E是PB的中點,則異面直線AE與PD所成角的余弦值為( 。
A、
1
3
B、
2
3
C、
3
3
D、
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的首項a1=1,公差d>0,且第2項、第5項、第14項是等比數(shù)列{bn}的第2項、第3項、第4項
(Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)若數(shù)列{cn}對任意n∈N*,均有
cn
bn
=an+1-an成立,求c1+c2+c3+…+c2014

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知tanα=3,計算:
(1)
sinα-cosα
cosα+sinα

(2)sinα•cosα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的前n項和為Sn,滿足2Sn=an+1-2n+1+1,n∈N*,且a1=1.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{
nan
3n
}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求值:sin750°+cos(-660°)+tan(-135°).

查看答案和解析>>

同步練習冊答案