設(shè)拋物線(xiàn)C:x2=2py(p>0),F(xiàn)為焦點(diǎn),拋物線(xiàn)C上一點(diǎn)P(m,3)到焦點(diǎn)的距離是4,拋物線(xiàn)C的準(zhǔn)線(xiàn)l與y軸的交點(diǎn)為H
(1)求拋物線(xiàn)C的方程;
(2)設(shè)M是拋物線(xiàn)C上一點(diǎn),E(0,4),延長(zhǎng)ME、MF分別交拋物線(xiàn)C于點(diǎn)A、B,若A、B、H三點(diǎn)共線(xiàn),求點(diǎn)M的坐標(biāo).
分析:(1)由拋物線(xiàn)的定義,結(jié)合P到焦點(diǎn)的距離為4建立關(guān)于p的方程,解出p=2即得拋物線(xiàn)C方程;
(2)設(shè)M(t,
t2
4
),由點(diǎn)斜式可寫(xiě)出直線(xiàn)MF、ME的方程,分別與拋物線(xiàn)方程聯(lián)立可解出點(diǎn)B、點(diǎn)A的坐標(biāo),根據(jù)A、B、H三點(diǎn)共線(xiàn),得kAH=kBH,由此可解出t值;
解答:解:(1)由題意得拋物線(xiàn)C的準(zhǔn)線(xiàn)l方程為:y=-
p
2

因?yàn)閽佄锞(xiàn)C上的點(diǎn)P(m,3)到焦點(diǎn)的距離是4,得3-(-
p
2
)=4,解得P=2
所以?huà)佄锞(xiàn)方程為:x2=4y.
(2)設(shè)M(t,
t2
4
),又直線(xiàn)過(guò)點(diǎn)F(0,1),則直線(xiàn)MF方程為y-1=
t2-4
4t
x
,
過(guò)點(diǎn)E(0,4)直線(xiàn)ME方程為y-4=
t2-16
4t
x,
y-1=
t2-4
4t
x
x2=4y
,得B(-
4
t
,
4
t2
),
y-4=
t2-16
4t
x
x2=4y
,得A(-
16
t
,
64
t2
),
則kAH=
64
t2
+1
-
16
t
=
64+t2
-16t
,kBH=
-
4
t2
+1
-
4
t
=
4+t2
-4t
,
∵A、B、H三點(diǎn)共線(xiàn),∴kAH=kBH,即
64+t2
-16t
=
4+t2
-4t
解得t=±4,
∴M點(diǎn)的坐標(biāo)為(±4,4).
點(diǎn)評(píng):本題主要考查了拋物線(xiàn)的簡(jiǎn)單性質(zhì),考查拋物線(xiàn)的標(biāo)準(zhǔn)方程,考查直線(xiàn)與拋物線(xiàn)的位置關(guān)系,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•黑龍江)設(shè)拋物線(xiàn)C:x2=2py(p>0)的焦點(diǎn)為F,準(zhǔn)線(xiàn)為l,A∈C,已知以F為圓心,F(xiàn)A為半徑的圓F交l于B,D兩點(diǎn);
(1)若∠BFD=90°,△ABD的面積為4
2
;求p的值及圓F的方程;
(2)若A,B,F(xiàn)三點(diǎn)在同一直線(xiàn)m上,直線(xiàn)n與m平行,且n與C只有一個(gè)公共點(diǎn),求坐標(biāo)原點(diǎn)到m,n距離的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)拋物線(xiàn)C:x2=2py(p>0),過(guò)它的焦點(diǎn)F且斜率為1的直線(xiàn)與拋物線(xiàn)C相交于A,B兩點(diǎn),已知|AB|=2.
(1)求拋物線(xiàn)C的方程;
(2)已知t是一個(gè)負(fù)實(shí)數(shù),P是直線(xiàn)y=t上一點(diǎn),過(guò)P作直線(xiàn)l1與l2,使l1⊥l2,若對(duì)任意的點(diǎn)P,總存在這樣的直線(xiàn)l1與l2,使l1,l2與拋物線(xiàn)均有公共點(diǎn),求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)拋物線(xiàn)C:x2=2py(p>0)的焦點(diǎn)為F,A(x0,y0)(x0≠0)是拋物線(xiàn)C上的一定點(diǎn).
(1)已知直線(xiàn)l過(guò)拋物線(xiàn)C的焦點(diǎn)F,且與C的對(duì)稱(chēng)軸垂直,l與C交于Q,R兩點(diǎn),S為C的準(zhǔn)線(xiàn)上一點(diǎn),若△QRS的面積為4,求p的值;
(2)過(guò)點(diǎn)A作傾斜角互補(bǔ)的兩條直線(xiàn)AM,AN,與拋物線(xiàn)C的交點(diǎn)分別為M(x1,y1),N(x2,y2).若直線(xiàn)AM,AN的斜率都存在,證明:直線(xiàn)MN的斜率等于拋物線(xiàn)C在點(diǎn)A關(guān)于對(duì)稱(chēng)軸的對(duì)稱(chēng)點(diǎn)A1處的切線(xiàn)的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣東省廣州市海珠區(qū)高三(上)數(shù)學(xué)綜合測(cè)試1(理科)(解析版) 題型:解答題

設(shè)拋物線(xiàn)C:x2=2py(p>0)的焦點(diǎn)為F,A(x,y)(x≠0)是拋物線(xiàn)C上的一定點(diǎn).
(1)已知直線(xiàn)l過(guò)拋物線(xiàn)C的焦點(diǎn)F,且與C的對(duì)稱(chēng)軸垂直,l與C交于Q,R兩點(diǎn),S為C的準(zhǔn)線(xiàn)上一點(diǎn),若△QRS的面積為4,求p的值;
(2)過(guò)點(diǎn)A作傾斜角互補(bǔ)的兩條直線(xiàn)AM,AN,與拋物線(xiàn)C的交點(diǎn)分別為M(x1,y1),N(x2,y2).若直線(xiàn)AM,AN的斜率都存在,證明:直線(xiàn)MN的斜率等于拋物線(xiàn)C在點(diǎn)A關(guān)于對(duì)稱(chēng)軸的對(duì)稱(chēng)點(diǎn)A1處的切線(xiàn)的斜率.

查看答案和解析>>

同步練習(xí)冊(cè)答案