分析 利用正弦定理、和差公式可得A,再利用余弦定理及其已知可得bc,利用三角形面積計算公式即可得出.
解答 解:∵bcosC+ccosB=$\sqrt{3}$R,由正弦定理可得:bcosC+ccosB=$\sqrt{3}$×$\frac{a}{2sinA}$,
∴sinBcosC+sinCcosB=$\sqrt{3}$×$\frac{sinA}{2sinA}$,化sin(B+C)=$\frac{\sqrt{3}}{2}$,即sinA=$\frac{\sqrt{3}}{2}$,
∴A=$\frac{π}{3}$.
由余弦定理可得:22=b2+c2-2bccos$\frac{π}{3}$=(b+c)2-2bc-bc=42-3bc,解得bc=4.
∴S△ABC=$\frac{1}{2}×4×sin\frac{π}{3}$=$\sqrt{3}$.
故答案為:$\sqrt{3}$.
點評 本題考查了正弦定理余弦定理、和差公式、三角形面積計算公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
x | 2 | 3 | 4 | 5 | 6 |
y | 22 | 38 | 55 | 65 | 70 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 15$\sqrt{3}$ | B. | 3$\sqrt{3}$ | C. | $\frac{{15\sqrt{3}}}{4}$ | D. | $\frac{{15\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\overrightarrow{s}$=(1,0,1),$\overrightarrow{n}$=(1,0,-1) | B. | $\overrightarrow{s}$=(1,1,1),$\overrightarrow{n}$=(1,1,-2) | ||
C. | $\overrightarrow{s}$=(2,1,1),$\overrightarrow{n}$=(-4,-2,-2) | D. | $\overrightarrow{s}$=(1,3,1),$\overrightarrow{n}$=(2,0,-1) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com