(本題滿分14分)
已知函數(shù)f(x)=lnx+
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)m
R,對任意的a∈(-l,1),總存在x
o∈[1,e],使得不等式ma - (x
o)<0成立,求實數(shù)m的取值范圍;
(Ⅲ)證明:ln
2 l+ 1n
22,+…+ln
2 n>
∈N*).
(Ⅰ)函數(shù)
的單調(diào)遞減區(qū)間是
.
(Ⅱ)
的取值范圍是
.
(Ⅲ)見解析。
試題分析:(Ⅰ)
.
令
,得
,因此函數(shù)
的單調(diào)遞增區(qū)間是
.
令
,得
,因此函數(shù)
的單調(diào)遞減區(qū)間是
.…………(4分)
(Ⅱ)依題意,
.
由(Ⅰ)知,
在
上是增函數(shù),
.
,即
對于任意的
恒成立.
解得
.
所以,
的取值范圍是
. …………………………(8分)
(Ⅲ)由(Ⅰ)
,
,
.
.
即
.
又,
.
.
由柯西不等式,
.
.
. ……………………(14分)
點評:較難題,利用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間的方法,解題時注意函數(shù)的定義域,避免出錯
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知函數(shù)
的圖象是連續(xù)不斷的曲線,且有如下的對應(yīng)值表
| 1
| 2
| 3
| 4
| 5
| 6
|
| 124.4
| 35
| -74
| 14.5
| -56.7
| -123.6
|
則函數(shù)
在區(qū)間[1,6]上的零點至少有( )
A、2個 B、3個 C、4個 D、5個
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(15分)已知函數(shù)
.
(1)若
的切線,函數(shù)
處取得極值1,求
,
,
的值;
證明:
;
(3)若
,且函數(shù)
上單調(diào)遞增,
求實數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)f(x)=lnx-
.
(1)當(dāng)
時,判斷f(x)在定義域上的單調(diào)性;
(2)若f(x)在[1,e]上的最小值為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
設(shè)
,點P(
,0)是函數(shù)
的圖象的一個公共點,兩函數(shù)的圖象在點P處有相同的切線.
(1)用
表示
a,b,c;
(2)若函數(shù)
在(-1,3)上單調(diào)遞減,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
若在
的展開式中,第4項是常數(shù)項,則
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
,(
為自然對數(shù)的底數(shù))。
(1)當(dāng)
時,求函數(shù)
在區(qū)間
上的最大值和最小值;
(2)若對任意給定的
,在
上總存在兩個不同的
,使得
成立,求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分12分)
已知函數(shù)
.
(1)當(dāng)
時,求證:函數(shù)
在
上單調(diào)遞增;
(2)若函數(shù)
有三個零點,求
的值;
(3)若存在
,使得
,試求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)已知函數(shù)
=
,
.
(1)求函數(shù)
在區(qū)間
上的值域;
(2)是否存在實數(shù)
,對任意給定的
,在區(qū)間
上都存在兩個不同的
,使得
成立.若存在,求出
的取值范圍;若不存在,請說明理由.
(3)給出如下定義:對于函數(shù)
圖象上任意不同的兩點
,如果對于函數(shù)
圖象上的點
(其中
總能使得
成立,則稱函數(shù)具備性質(zhì)“
”,試判斷函數(shù)
是不是具備性質(zhì)“
”,并說明理由.
查看答案和解析>>