(04年浙江卷理)如圖,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是線(xiàn)段EF的中點(diǎn)。
(1)求證AM//平面BDE
(2)求二面角A-DF-B的大;
(3)試在線(xiàn)段AC上確定一點(diǎn)P,使得PFBC所成的角是60°。

解析: 方法一

解: (Ⅰ)記AC與BD的交點(diǎn)為O,連接OE,

∵O、M分別是AC、EF的中點(diǎn),ACEF是矩形,

∴四邊形AOEM是平行四邊形,

∴AM∥OE。

平面BDE, 平面BDE,

∴AM∥平面BDE。

 

(Ⅱ)在平面AFD中過(guò)A作AS⊥DF于S,連結(jié)BS,

∵AB⊥AF, AB⊥AD,

∴AB⊥平面ADF,

∴AS是BS在平面ADF上的射影,

由三垂線(xiàn)定理得BS⊥DF。

∴∠BSA是二面角A―DF―B的平面角。

在RtΔASB中,

∴二面角A―DF―B的大小為60º。

(Ⅲ)設(shè)CP=t(0≤t≤2),作PQ⊥AB于Q,則PQ∥AD,

∵PQ⊥AB,PQ⊥AF,

∴PQ⊥平面ABF,平面ABF,

∴PQ⊥QF。

在RtΔPQF中,∠FPQ=60º,

PF=2PQ。

∵ΔPAQ為等腰直角三角形,

又∵ΔPAF為直角三角形,

,

所以t=1或t=3(舍去)

即點(diǎn)P是AC的中點(diǎn)。

方法二

(Ⅰ)建立如圖所示的空間直角坐標(biāo)系。

設(shè),連接NE,

則點(diǎn)N、E的坐標(biāo)分別是(、(0,0,1),∴NE=(,

 又點(diǎn)A、M的坐標(biāo)分別是()、(

∴ AM=(

∴NE=AM且NE與AM不共線(xiàn),

∴NE∥AM。

又∵平面BDE, 平面BDE,

∴AM∥平面BDF。

(Ⅱ)∵AF⊥AB,AB⊥AD,AF

∴AB⊥平面ADF。

為平面DAF的法向量。

∵NE?DB=(?=0,

∴NE?NF=(?=0得

NE⊥DB,NE⊥NF,

∴NE為平面BDF的法向量。

∴cos<AB,NE>=

∴AB與NE的夾角是60º。

即所求二面角A―DF―B的大小是60º。

(Ⅲ)設(shè)P(t,t,0)(0≤t≤)得

 

∴CD=(,0,0)

又∵PF和CD所成的角是60º。

解得(舍去),

即點(diǎn)P是AC的中點(diǎn)。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(04年浙江卷理)如圖,△OBC的三個(gè)頂點(diǎn)坐標(biāo)分別為(0,0)、(1,0)、(0,2),設(shè)P1為線(xiàn)段BC的中點(diǎn),P2為線(xiàn)段CO的中點(diǎn),P3為線(xiàn)段OP1的中點(diǎn),對(duì)于每一個(gè)正整數(shù)nPn+3為線(xiàn)段PnPn+1的中點(diǎn),令Pn的坐標(biāo)為(xn,yn),an=yn+yn+1+yn+2.
(1)求a1,a2,a3an;
(2)證明,nÎN*;
(3)若記bn=y4n+4-y4n,nÎN*,證明{bn}是等比數(shù)列。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(04年浙江卷理)設(shè)f '(x)是函數(shù)f(x)的導(dǎo)函數(shù),y=f '(x)的圖象如右圖所示,則y=f(x)的圖象最有可能的是

(A)               (B)               (C)                (D)

查看答案和解析>>

同步練習(xí)冊(cè)答案